

100310 Low Skew 2:8 Differential Clock Driver **General Description**

The 100310 is a low skew 8-bit differential clock driver which is designed to select between two separate differential clock inputs. The low output to output skew (< 50 ps) is maintained for either clock input. A LOW on the select pin (SEL) selects CLKINA, CLKINA and a HIGH on the SEL pin selects the CLKINB, CLKINB inputs.

The 100310 is ideal for those applications that need the ability to freely select between two clocks, or to maintain the ability to switch to an alternate or backup clock should a problem arise with the primary clock source.

A V_{BB} output is provided for single-ended operation.

Features

- Low output to output skew
- Differential inputs and outputs
- Allows multiplexing between two clock inputs
- Voltage compensated operating range: -4.2V to -5.7V

Ordering Code: See Section 5

Pin Names	Description
CLKIN _D , CLKIN _D	Differential Clock Inputs
SEL	Select
CLK0-7, CLK0-8	Differential Clock Outputs
V _{BB}	V _{BB} Output
NC	No Connect

Truth Table

CLKINA	CLKINA	CLKINB		SEL	CLKn	CLKn
н	L	х	х	L	н	L
L	н	х	х	L	L	н
x	х	н	L	н	н	L
x	х	L	н	н	L	н

Connection Diagram

Absolute Maximum Ratings Above which the useful life may be impaired (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (T _{STG})	-65°C to +150°C
Maximum Junction Temperture (TJ) Plastic	+ 150°C
Pin Potential to Ground Pin (V_{EE})	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	– 50 mA
ESD (Note 2)	≥2000V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

 $V_{EE} = -4.2V \text{ to } -5.7V$, $V_{CC} = V_{CCA} = \text{GND}$, $T_{C} = 0^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (Note 3)

VEE = -	$v_{EE} = -4.2v$ to $-5.7v$, $v_{CC} = v_{CCA} = GND$, $1C = 0.000$ to $+3500$ (Note 3)											
Symbol	Parameter	Min	Тур	Max	Units	Conditions						
VOH	Output HIGH Voltage	- 1025	-955	-870	mV	$V_{IN} = V_{IH}$ (Max)	Loading with					
V _{OL}	Output LOW Voltage	- 1830	- 1705	- 1620	mV	or V _{IL} (Min)	50Ω to $-2.0V$					
VOHC	Output HIGH Voltage	-1035			m∨	V _{IN} = V _{IH}	Loading with					
VOLC	Output LOW Voltage			- 1610	m∨	or V _{IL} (Max)	50 Ω to $-2.0V$					
V _{BB}	Output Reference Voltage	- 1380	- 1320	- 1260	mV	I _{VBB} = −250 μA						
VDIFF	Input Voltage Differential	150			mV	Required for Full Output Swing						
VCM	Common Mode Voltage	V _{CC} - 2.0		V _{CC} - 0.5	v							
ViH	Input High Voltage	- 1165		-870	mV	Guaranteed HIGH Signal for All Inputs						
VIL	Input Low Voltage	- 1830		-1475	mV	Guaranteed LOW	Signal for					
l _{IL}	Input LOW Current	0.50			μА	V _{IN} = V _{IL} (Min)						
lin i	Input HIGH Current	_		240	μΑ	V _{IN} = V _{IH} (Max)						
Ісво	Input Leakage Current	- 10			μA	V _{IN} = V _{EE}						
IEE	Power Supply Current	- 100		-40	mA	Inputs Open						

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	-40°C to +85°C
Supply Voltage (V _{EE})	-5.7V to -4.2V

Commercial Version (Continued)

AC Electrical Characteristics $v_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	ר _	$T_C = 0^{\circ}C$		Tc	$T_{C} = +25^{\circ}C$			= +8	5°C	Units	Conditions
Cymbol	rarameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		Conditions
f _{MAX}	Max Toggle Frequency CLKIN A/B to Q _n SEL to Q _n	750 575			750 575			750 575			MHz MHz	
tplh tphl	Propagation Delay, CLKIN _n to CLK _n Differential Single-Ended	0.80 0.80	0.90 0.96	1.00 1.20	0.82 0.82	0.92 0.98	1.02 1.22	0.89 0.89	1.01 1.06	1.09 1.29	ns	Figure 3
t _{PLH} t _{PHL}	Propagation Delay, SEL to Output	0.75	0.99	1.20	0.80	1.02	1.25	0.85	1.10	1.35	ns	Figure 2
tps toslh toshl tost	LH-HL Skøw Gate-Gate Skøw LH Gate-Gate Skøw HL Gate-Gate LH-HL Skøw		10 20 20 30	30 30 50 60		10 20 20 30	30 50 50 60		10 20 20 30	30 50 50 60	ps	(Notes 1, 4) (Notes 2, 4) (Notes 2, 4) (Notes 3, 4)
ts	Setup Time SEL to CLKIN _n	300			300			300			ps	-
t _H	Setup Time SEL to CLKIN _n	0			0			0			ps	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	275	510	750	275	500	750	275	480	750	ps	Figure 4

Note 1: tps describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's low to high and high to low propagation delays. With differential signal pairs, a low to high or high to low transition is defined as the transition of the true output or input pin.

Note 2: toSLH describes in-phase gate-to-gate differential propagation skews with all differential outputs going low to high; toSHL describes the same conditions except with the outputs going high to low.

Note 3: t_{OST} describes the maximum worst case difference in any of the t_{PS}, t_{OSLH} or t_{OST} delay paths combined.

Note 4: The skew specifications pertain to differential I/O paths.

Industrial Version

DC Electrical Characteristics V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND (Note 1)

Symbol	Parameter	Tc =	-40°C	T _C = 0°C	to +85°C	Units	Conditions			
oy mbor		Min	Max	Min	Max					
V _{OH}	Output HIGH Voltage	- 1085	-870	- 1025	-870	mV	$V_{IN} = V_{IH}$ (Max)	Loading with		
V _{OL}	Output LOW Voltage	- 1830	- 1575	- 1830	- 1620	mV	or V _{IL} (Min)	50Ω to $-2.0V$		
VOHC	Output HIGH Voltage	- 1095		- 1035		mV	$V_{IN} = V_{IH}$	Loading with		
VOLC	Output LOW Voltage		- 1565		- 1610	mV	or V _{IL} (Min)	50Ω to −2.0V		
V _{BB}	Output Reference Voltage	- 1395	- 1255	- 1380	-1260	mV	I _{VBB} = −250 μA			
VDIFF	Input Voltage Differential	150		150		mV	Required for Full Output Swing			
V _{CM}	Common Mode Voltage	V _{CC} - 2.0	V _{CC} - 0.5	V _{CC} - 2.0	V _{CC} - 0.5	V				
VIH	Input High Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH All Inputs	H Signal for		
VIL	Input Low Voltage	- 1830	- 1480	- 1830	-1475	mV	Guaranteed LOW All Inputs	Signal for		
կլ	Input LOW Current	0.50		0.50		μA	$V_{IN} = V_{IL}$ (Min)			
l _{IH}	Input HIGH Current		240		240	μA	$V_{IN} = V_{IH}$ (Max)			
ICBO	Input Leakage Current	- 10		-10		μA	$V_{IN} = V_{EE}$			
IEE	Power Supply Current	- 100	-40	-100	-40	mA	Inputs Open			

Note 1: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

AC Electrical Characteristics $v_{EE} = -4.2V$ to -5.7V, $v_{CC} = v_{CCA} = GND$

Symbol	Parameter	$T_{C} = -40^{\circ}C$			T _C = +25°C			Тс	= +8	5°C	Units	Conditions
Cymbol	ratameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Conditions
fmax	Max Toggle Frequency CLKIN A/B to Q _n SEL to Q _n	750 575			750 575			750 575			MHz MHz	
tplh tphL	Propagation Delay, CLKIN _n , to CLK _n Differential Single-Ended	0.78 0.78	0.88 0.95	0.98 1.18	0.82 0.82	0.92 0.98	1.02 1.22	0.89 0.89	1.01 1.06	1.09 1.29	ns	Figure 3
t _{PLH} t _{PHL}	Propagation Delay SEL to Output	0.70	0.99	1.20	0.80	1.02	1.25	0.85	1.10	1.35	ns	Figure 2
tps toslh toshl tost	LH-HL Skow Gate-Gate Skew LH Gate-Gate Skew HL Gate-Gate LH-HL Skew		10 20 20 30	30 50 50 60		10 20 20 30	30 50 50 60		10 20 20 30	30 50 50 60	ps	(Notes 1, 4) (Notes 2, 4) (Notes 2, 4) (Notes 3, 4)
ts	Setup Time SEL to CLKIN _n	300			300			300			ps	
t _H	Setup Time SEL to CLKIN _n	0			0			0			ps	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	275	510	750	275	500	750	275	480	750	ps	Figure 4

Note 1: 1pg describes opposite edge skews, i.e. the difference between the delay of a differential output signal pair's low to high and high to low propagation delays. With differential signal pairs, a low to high or high to low transition is defined as the transition of the true output or input pin.

Note 2: tosth describes in-phase gate-to-gate differential propagation skews with all differential outputs going low to high; tosht describes the same conditions except with the outputs going high to low.

Note 3: tOST describes the maximum worst case difference in any of the tPS, tOSLH or tOST delay paths combined.

Note 4: The skew specifications pertain to differential I/O paths.

Test Circuit

Note 2: L1, L2, L3 and L4 \simeq equal length 50 Ω impedance lines.

Note 3: All unused inputs and outputs are loaded with 50 Ω in parallel with \leq 3 pF to GND.

Note 4: Scope should have 50Ω input terminator internally.

FIGURE 1. AC Test Circuit

100310

