

100311 Low Skew 1:9 Differential Clock Driver

General Description

The 100311 contains nine low skew differential drivers, designed for generation of multiple, minimum skew differential clocks from a single differential input (CLKIN, $\overline{\rm CLKIN}$). If a single-ended input is desired, the V_{BB} output pin may be used to drive the remaining input line. A HIGH on the enable pin $(\overline{\rm EN})$ will force a LOW on all of the CLK_n outputs and a HIGH on all of the $\overline{\rm CLK}_n$ output pins. The 100311 is ideal for distributing a signal throughout a system without worrying about the original signal becoming too corrupted by undesirable delays and skew. The 100311 is pin-for-pin compatible with the Motorola 100E111.

Ordering Code: See Section 4

Logic Symbol

Pin Names	Description
CLKIN, CLKIN	Differential Clock Inputs
EN	Enable
CLK0-8, CLK0-8	Differential Clock Outputs
VBB	V _{BB} Output
NC	No Connect

Truth Table

Features

2000V ESD protection

1:9 low skew clock driver

Differential inputs and outputs

■ Low output to output skew (≤ 50 ps)

CLKIN	CLKIN	EN	CLKn	CLKn
L	н	L	L	н
н	L	L	н	L
х	х	н	L	н

TL/F/10648-1

Connection Diagram

Absolute Maximum Ratings Above which the useful life may be impaired (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (T _{STG})	-65°C to +150°C
Maximum Junction Temperture (TJ)	
Ceramic	+ 175°C
Plastic	+ 150°C
Pin Potential to Ground Pin (V _{EE})	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	50 mA
ESD (Note 2)	≥2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to + 85°C
Industrial	- 40°C to + 85°C
Supply Voltage (V _{EE})	
Commercial	-5.7V to -4.2V
Industrial	-5.7V to -4.2V

Commercial Version—100311

DC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = 0^{\circ}C$ to $+85^{\circ}C$ (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Condi	tions	
V _{OH}	Output HIGH Voltage	- 1025	- 955	-870	mV	V _{IN} = V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	- 1830	- 1705	- 1620	mV	or V _{IL} (Min)	50 Ω to $-2.0V$	
V _{OHC}	Output HIGH Voltage	- 1035			mV	V _{IN} = V _{IH}	Loading with	
VOLC	Output LOW Voltage			- 1610	mV	or V _{IL} (Max)	50Ω to $-2.0V$	
V _{BB}	Output Reference Voltage	- 1380	- 1320	- 1260	mV	I _{VBB} = -300 μA		
VDIFF	Input Voltage Differential	150			mV	Required for Full C	utput Swing	
V _{CM}	Common Mode Voltage	V _{CC} - 2.0		V _{CC} - 0.5	v			
VIH	Input High Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input Low Voltage	- 1830		- 1475	mV	Guaranteed LOW Signal for All Inputs		
h	Input LOW Current	0.50			μА	V _{IN} = V _{IL} (Min)		
IIH	Input HIGH Current CLKIN, CLKIN EN			100 250	μА	V _{IN} = V _{IH} (Max)		
СВО	Input Leakage Current	- 10			μA	$V_{IN} = V_{EE}$		
IEE	Power Supply Current	- 115		-57	mA	Inputs Open		
V _{PP}	Minimum Input Swing	250			m∨			
VCMR	Common Mode Range	- 1.6		-0.4	v			

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version—100311 (Continued)

AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	= 0°C	T _C =	T _C = +25°C		T _C = +85°C		Conditions
	i arumeter	Min	Max	Min	Max	Mín	Max	Units	Conditions
f _{max}	Max Toggle Frequency	750		750		750		MHz	
tplH tpHL	Propagation Delay, CLKIN to CLKN Differential Single-Ended	0.750 0.650	0.950 1.050	0.775 0.675	0.975 1.175	0.840 0.740	1.040 1.240	ns	Figures 1 and 2
t _{PLH} t _{PHL}	Propagation Delay Enable and Disable to Output	0.75	1.20	0.80	1.25	0.85	1.35	ns	Figures 1 and 2
t _R	Release Time EN to CLKIN	0.30		0.30		0.30		ns	
t _{skew}	Gate to Gate Skew		50		50		50	ps	
t _s	Setup Time SEL to CLKIN _N	250		250		300		ps	
th	Hold Time SEL to CLKIN _N	0		0		0		ns	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	275	750	275	750	275	750	ps	Figures 1 and 2

Note 1: Gate to gate skew is defined as the different in propagation delays between each of the outputs.

Industrial Version-100311

DC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$ (Note 3)

Symbol	Parameter	т _с =	-40°C	T _C = 0°C	to +85°C	Units	Conditions		
-,	runneter	Min	Max	Min	Max		Conditions		
VOH	Output HIGH Voltage	- 1085	-870	- 1025	-870	mV	V _{IN} = V _{IH} (Max)	Loading with	
VOL	Output LOW Voltage	- 1830	- 1575	- 1830	-1620	mV	or V _{IL} (Min)	50Ω to −2.0V	
VOHC	Output HIGH Voltage	- 1095		- 1035		mV	$v_{IN} = v_{IH}$	Loading with 50Ω to $-2.0V$	
VOLC	Output LOW Voltage		- 1565		-1610	mV	or V _{IL} (Min)		
V _{BB}	Output Reference Voltage	- 1395	- 1255	- 1380	-1260	mV	$I_{VBB} = -300 \mu$ A		
VDIFF	Input Voltage Differential	150		150		mV	Required for Full	Output Swing	
V _{CM}	Common Mode Voltage	V _{CC} - 2.0	V _{CC} - 0.5	V _{CC} - 2.0	$V_{CC} - 0.5$	V			
VIH	Input High Voltage	-1170	-870	- 1165	-870	mV	Guaranteed HIGI All Inputs	H Signal for	

Industrial Version—100311 (Continued)

100311

DC Electrical Characteristics (Continued)

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$ (Note 3)

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = 0^{\circ}$	$T_{C} = 0^{\circ}C \text{ to } + 85^{\circ}C$		Conditions
-,	, and the for	Min	Max	Min	Max	Units	Conditions
VIL	Input Low Voltage	-1830	- 1480	- 1830		mV	Guaranteed LOW Signal for All Inputs
l _{IL}	Input LOW Current	0.50		0.50		μA	V _{IN} = V _{IL} (Min)
 Iн	Input HIGH Current						V _{IN} = V _{IH} (Max)
	CLKIN, CLKIN		100		100	μA	
	EN		250		250	μΛ	
I _{CBO}	Input Leakage Current	-10		- 10		μA	$V_{IN} = V_{EE}$
IEE	Power Supply Current	-115	-57	-115	-57	mA	Inputs Open
VPP	Minimum Input Swing	250		250		mV	
VCMR	Common Mode Range	- 1.6	-0.4	- 1.6	-0.4	v	_

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

 V_{EE} = -4.2V to $-5.7V,\,V_{CC}$ = V_{CCA} = GND

Symbol	Parameter	T _C =	– 40°C	T _C =	+ 25°C	T _C =	+ 85°C	Units	Conditions
-,	i alameter	Min	Max	Min	Max	Min	Max		
f _{max}	Max Toggle Frequency	750		750		750		MHz	
t _{PLH} t _{PHL}	Propagation Delay, CLKIN to CLKN Differential Single-Ended	0.725 0.625	0.925 1.025	0.80 0.70	1.00 1.20	1.05 0.90	1.25 1.40	ns	Figures 1 and 2
t _{PLH} t _{PHL}	Propagation Delay Enable and Disable to Output	0.70	1.20	0.60	1.60	0.60	1.60	ns	Figures 1 and 2
t _R	Release Time EN to CLKIN	0.30		0.30		0.30		ns	
t _{skew}	Gate to Gate Skew		50		50		50	ps	
ts	Setup Time SEL to CLKIN _N	250		200		200		ps	
t _h	Hold Time SEL to CLKIN _N	0		0		0		ns	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	275	750	275	600	275	600	ps	Figures 1 and 2

