July 1989 **Revised August 2000**

Ordering Code:

resistors.

FAIRCHILD

100355

SEMICONDUCTOR

General Description

Order Number	Package Number	Package Description
100355PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100355QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100355QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Features

■ 2000V ESD protection

■ Pin/function compatible with 100155

■ Greater than 40% power reduction of the 100155

Available to industrial grade temperature range

■ Voltage compensated operating range = -4.2V to -5.7V

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Low Power Quad Multiplexer/Latch

The 100355 contains four transparent latches, each of

which can accept and store data from two sources. When

both Enable (\overline{E}_n) inputs are LOW, the data that appears at

an output is controlled by the Select (S_n) inputs, as shown

in the Operating Mode table. In addition to routing data

from either D₀ or D₁, the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_0 or D_1 to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_0 or D_1 . A positive-going signal on either Enable input latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW. All inputs have 50 k $\!\Omega$ pull-down

Logic Symbol D0a D1a D0b D1b D0c D1c D0d D

Pin Descriptions

Pin Names	Description
$\overline{E}_1, \overline{E}_2$	Enable Inputs (Active LOW)
<u>S</u> ₀ , S ₁	Select Inputs
MR	Master Reset
D _{na} –D _{nd}	Data Inputs
Q _a –Q _d	Data Outputs
$\overline{Q}_{a} - \overline{Q}_{d}$	Complementary Data Outputs

© 2000 Fairchild Semiconductor Corporation DS010147 www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

 $\label{eq:storage} \begin{array}{l} \mbox{Storage Temperature} (T_{STG}) \\ \mbox{Maximum Junction Temperature} (T_J) \\ \mbox{V}_{EE} \mbox{Pin Potential to Ground Pin} \\ \mbox{Input Voltage} (DC) \\ \mbox{Output Current} (DC \mbox{Output HIGH}) \\ \mbox{ESD} (Note 3) \end{array}$

 $\begin{array}{l} -65^{\circ}\text{C to} +150^{\circ}\text{C} \\ +150^{\circ}\text{C} \\ -7.0\text{V to} +0.5\text{V} \\ \text{V}_{\text{EE}} \text{ to} +0.5\text{V} \\ -50 \text{ mA} \\ \geq 2000\text{V} \end{array}$

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	$0^{\circ}C$ to $+85^{\circ}C$
Industrial	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage (V _{EE})	-5.7V to -4.2V

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 4)

$\mathsf{V}_{EE}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{CC}=\mathsf{V}_{CCA}=GND,\,\mathsf{T}_{C}=0^{\circ}\mathsf{C}$ to $+85^{\circ}\mathsf{C}$ Symbol Parameter Conditions Min Тур Max Units Output HIGH Voltage -1025 -955 -870 mV Vон $V_{IN} = V_{IH (Max)}$ Loading with or V_{IL (Min)} Output LOW Voltage -1830 -1705 -1620 mV 50Ω to -2.0V V_{OL} VOHC Output HIGH Voltage -1035 mV $V_{IN} = V_{IH (Min)}$ Loading with VOLC Output LOW Voltage -1610 m٧ or VIL (Max) 50Ω to -2.0V Guaranteed HIGH Signal -1165 V_{IH} Input HIGH Voltage -870 mV for ALL Inputs VIL Input LOW Voltage -1830 -1475 Guaranteed LOW Signal mV for ALL Inputs Input LOW Current 0.50 μΑ $V_{IN} = V_{IL (Min)}$ Ι_{ΙL} $I_{\rm H}$ Input HIGH Current \overline{S}_0, S_1 220 $\overline{E}_1, \overline{E}_2$ 350 μΑ $V_{IN} = V_{IH (Max)}$ D_{na}-D_{nd} 340 MR 430 Power Supply Current -87 -40 Inputs Open mΑ I_{EE}

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

100355

100355

Commercial Version (Continued) DIP AC Electrical Characteristics VEE = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND

Symbol	Parameter	т _с =	0°C	$T_{C} = +25^{\circ}C$		$T_{C} = +85^{\circ}C$		Units	Conditions
eyboi		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay								
t _{PHL}	D _{na} -D _{nd} to Output	0.60	1.90	0.60	1.90	0.70	2.00	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay								Figures 1, 2
t _{PHL}	\overline{S}_0 , S_1 to Output	1.00	2.60	1.00	2.60	1.20	2.70	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay	0.80	2.00	0.80	2.00	0.80	2.10	ns	
t _{PHL}	\overline{E}_1 , \overline{E}_2 to Output	0.80	2.00	0.60	2.00	0.60	2.10	115	
t _{PLH}	Propagation Delay	0.80	2.30	0.80	2.30	0.80	2.30	ns	Figures 1, 3
t _{PHL}	MR to Output	0.00			2.00	0.00			riguies 1, 5
t _{TLH}	Transition Time	0.60	1.40	0.60	1.40	0.60	60 1.40	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.60	1.40	0.00	1.40	0.00	1.40	115	Figures 1, 2
t _S	Setup Time								
	D _{na} –D _{nd}	0.90		0.90		0.90		ns	Figure 4
	<u>S</u> ₀ , S ₁	1.70		1.70		1.70			
	MR (Release Time)	1.50		1.50		1.50			Figure 3
t _H	Hold Time								
	D _{na} –D _{nd}	0.40		0.40		0.40		ns	Figure 4
	S ₀ , S ₁	0.00		0.00		0.00			
t _{PW} (L)	Pulse Width LOW $\overline{E}_1, \overline{E}_2$	2.00		2.00		2.00		ns	Figure 2
t _{PW} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

Commercial Version (Continued) PLCC AC Electrical Characteristics

$V_{EE} = -4.2V$ to $-5.7V$, V	$cc = V_{CCA} = GND$
$v_{\rm EE} = -4.2 v (0 - 0.1 v, v)$	CC = VCCA = OND

Symbol	Parameter	T _C =	T _C = -	+ 25°C	T _C = +85°C		Units	Conditions	
Symbol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay								
t _{PHL}	D _{na} –D _{nd} to Output	0.60	1.70	0.60	1.70	0.70	1.80	ns	
	(Transparent Mode)								
^t PLH	Propagation Delay								Figures 1, 2
PHL	\overline{S}_0 , S_1 to Output	1.00	2.40	1.00	2.40	1.20	2.50	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.80	1.90	ns	
PHL	$\overline{E}_1, \overline{E}_2$ to Output	0.00	1.00	0.00	1.00	0.00	1.50	113	
t _{PLH}	Propagation Delay	0.80	2.10	0.80	2.10	0.80	2.10	ns	Figures 1, 3
PHL	MR to Output	0.00	2.10	0.00	2.10	0.00	2.10	110	riguico i, o
t _{TLH}	Transition Time	0.60	1.30	0.60	1.30	0.60	1.30	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.00	1.50	0.00	1.50	0.00	1.50	113	riguies i, z
s	Setup Time								
	D _{na} -D _{nd}	0.80		0.80		0.80		ns	Figure 4
	<u>S</u> ₀ , S ₁	1.60		1.60		1.60			
	MR (Release Time)	1.40		1.40		1.40			Figure 3
н	Hold Time								
	D _{na} -D _{nd}	0.30		0.30		0.30		ns	Figure 4
	<u>S</u> ₀ , S ₁	-0.10		-0.10		-0.10			
t _{PW} (L)	Pulse Width LOW \overline{E}_1 , \overline{E}_2	2.00		2.00		2.00		ns	Figure 2
_{PW} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3
^t OSHL	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		330		330		330	ps	(Note 5)
	Data to Output Path								
toslh	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		370		370		370	ps	(Note 5)
	Data to Output Path								
OST	Maximum Skew Opposite Edge								PLCC only
	Output-to-Output Variation		370		370		370	ps	(Note 5)
	Data to Output Path								
PS	Maximum Skew	1						İ	PLCC only
	Pin (Signal) Transition Variation		270		270		270	ps	(Note 5)
	Data to Output Path								

Note 5: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same pack-aged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

100355

100355

Industrial Version

PLCC DC Electrical Characteristics (Note 6) $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = 0^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Cymbol		Min	Max	Min	Max	onita	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH (Max)}	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL (Min)}	50Ω to $-2.0V$	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH (Min)} Loading wi		
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL (Max)} 50Ω to –2		
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for ALL Inputs		
V _{IL}	Input LOW Voltage	-1830	-1480	1830	1475	mV	Guaranteed LOW Signal		
							for ALL Inputs		
I _{IL}	Input LOW Current	0.50		0.50		μΑ	$V_{IN} = V_{IL (Min)}$		
I _{IH}	Input HIGH Current								
	<u>S</u> ₀ , S ₁		300		220				
	$\overline{E}_1, \overline{E}_2$		350		350	μΑ	V _{IN} = V _{IH (Max)}		
	D _{na} –D _{nd}		340		340				
	MR		430		430				
I _{EE}	Power Supply Current	-87	-40	-87	-40	mA	Inputs Open		

Note 6: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

Symbol	Parameter	T _C = -	–40°C	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
eyboi		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay								
t _{PHL}	D _{na} -D _{nd} to Output	0.60	1.70	0.60	1.70	0.70	1.80	ns	
	(Transparent Mode)								
t _{PLH}	Propagation Delay								Figures 1, 2
t _{PHL}	\overline{S}_0 , S ₁ to Output	1.00	2.40	1.00	2.40	1.20	2.50	ns	Figures 1, 2
	(Transparent Mode)								
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.80	1.90	ns	
t _{PHL}	$\overline{E}_1, \overline{E}_2$ to Output	0.00	1.00	0.60	1.00	0.60	1.90	115	
t _{PLH}	Propagation Delay	0.80	2.10	0.80	2.10	0.80	2.10	ns	Figures 1, 3
t _{PHL}	MR to Output	0.00	2.10	0.00	2.10	0.00	2.10	115	riguies i, a
t _{TLH}	Transition Time	0.40	1.90	0.60	1.30	0.60	1.30	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.40	1.90	0.60	1.50	0.00	1.50	115	Figures 1, 2
ts	Setup Time								
	D _{na} -D _{nd}	0.90		0.80		0.80		ns	Figure 4
	S ₀ , S ₁	2.40		1.60		1.60			
	MR (Release Time)	1.50		1.40		1.40			Figure 3
t _H	Hold Time								
	D _{na} -D _{nd}	0.40		0.30		0.30		ns	Figure 4
	S ₀ , S ₁	0.00		-0.10		-0.10			
t _{PW} (L)	Pulse Width LOW \overline{E}_1 , \overline{E}_2	2.00		2.00		2.00		ns	Figure 2
t _{PW} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

8

www.fairchildsemi.com