

QUAD 2-INPUT OR/NOR GATE COMPLEMENTARY OUTPUTS 10101

10101F: -30 to +85°C

DIGITAL 10,000 SERIES ECL

DESCRIPTION

The 10101 is a high speed 2-input OR/NOR quad gate with complementary outputs. The 10101 is particularly useful as a quad differential line driver.

Each gate has one input connected to pin 12. All inputs are terminated with a 50 k Ω resistor to VEE which eliminates the need to tie unused inputs low. The gate has an excellent speed-power product of 50 picojoules. The 10101 is optimized for high performance logic applications. This gate meets the ECL 10,000 Series standard voltage, current and rise and fall time specifications.

FEATURES

- FAST PROPAGATION DELAY= 20 ns TYP
- COMPLEMENTARY OR/NOR OUTPUTS
 EXCELLENT FOR DRIVING TWISTED PAIRS
- COMMON INPUT FOR GATING
- LOW POWER DISSIPATION = 100 mW/PACKAGE TYP (NO LOAD)
- HIGH FANOUT CAPABILITY
 CAN DRIVE 50 ohm LINES
- HIGH Z INPUTS INTERNAL 50 $k\Omega$ PULLDOWNS
- HIGH IMMUNITY FROM POWER SUPPLY VARIA-TIONS: VEE = -5.2 V ±5% RECOMMENDED
- OPEN EMITTER LOGIC AND BUSSING CAPABILITY

TEMPERATURE RANGE

−30 to +85°C Operating Ambient

PACKAGE TYPE

• F: 16 Pin CERDIP

LOGIC DIAGRAM

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (at Listed Voltages and Ambient Temperatures).

	TEST VOLTAGE VALUES										
@ Test	(Volts)										
Temperature	VIH mex	VIL min	VIHA min	VILA mex	VEE						
-30, C	-0 890	-1.890	-1.205	-1.500	-5.2						
+25°C	-0.810	-1.850	-1.105	-1.475	-6.2						
+86^C	-0.700	-1.825	-1.036	-1.440	5.2						

	_						_				~0.700	-1.820	-1.036	-1.440	0.2	i
Characteristic	Symbol	Pin Under Test	10101 Test Limita						TEST VOLTAGE APPLIED TO PINS LISTED BELOW:							
			-30°C		+26°C			+85° C	1						(VCC)	
			Min	Max	Min	Тур	Max	Min	Mex	Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	=	20	26	-	1,50	mAdc	-	-	-	-	8	1,16
Input Current	linH	4	_	-	-	-	2 6 5	-	**	µAdc	4		-	_	8	1,16
	L	12	<u>_</u>	-	-	-	660_	J		μAdc	12	- ×-	1.5		8	1,16
	linL	4	-	(=)	0.6	-	-		1.00	μAdc	_	4	-	-	8	1,16
		12	-	-	0.6	-	-			µAdc		12	-		8	1.16
Logic "1" Output Voltage	VOH	6	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	12	-	-	_	8	1,16
		6	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700		4	-	-	-		
		2	-1.060	-0.890	-0 960	-	-0.810	-0.890	-0 700	1	_	12	-	-	1	1
		2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0 700	,	-	4	-			
Logic "O" Output Voltage	VOL	6	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	~	12	-	_		
		6	-1.890	-1.675	-1 860	-	-1.650	-1 825	-1.616	1	_	4	-	-	1	1
		2	-1.890	-1.675	-1.860	-	-1.650	-1.825	-1 616	1	12	-	-	_	1	1
		2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.616	1	. 4	-	-	-		
Logic "1" Threshold Voltage	VOHA	6	-1.080	-	-0.980	-	-	-0.910	-	Vdc			12		8	1,18
		6	-1.080	-	~0 980	-	-	-0.910		1	_	-	4	-		1
		2	-1.080	-	−0 980	-0.0	-	-0 910	-	1	-	-	-	12	1	1
		2	-1.080	-	-0.980		-	-0.910	-		-	-	-	4		
Logic "O" Threshold Voltage	VOLA	5	-	-1.665		_	-1.630	-	-1.695	Vdc			-	12	8	1,16
		5	-	-1.665	-	-	-1.630	-	-1.695	1	-	-	-	4	1 1	
		2	-	-1.666	-	-	-1.630	1.00	-1.696	1	-	-	12	-		1
		2	-	-1.665	- 1	-	-1.630	0.00	-1.696	,	l -		4	_		
Switching Times *													Pulse In	Pulse Out	-3.2 ∨	+2.0 V
(60-ohm load)			ŀ													
Propagation Dalay	14+2-	2	1.0	3.1	1.0	2.0	2.9	1.0	3.3	ns.	-	i -	4	2	В	1.16
	14-2+	2			1	- 1	1	1 1	1		-	-		2		
	t4+ 6+	5	1 1	- 1					1	1 1	-	-		6		
	14-5-	6	1	1	, ,		1	[T	4	1 1	-	-		6	1 1	1 1
Rise Time (20% to 80%)	12+	2	1.1	36	1.1	- 1	3.3	1.1	3.7	1 1	1 =	-		2	1	
	16+	5	1 1			J				1 1	-	-		5		
Fall Time (20% to 80%)	t2-	2			1						-	-		2	1 4	100
	t6-	5	1	7	' '	1	,		,	'	-	-	'	5	' '	1

^{*}Unused outputs connected to a 50-ohm resistor to ground.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY WAVEFORMS @ 25°C

NOTES:

- 1. Each ECL 10,000 series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50-ohm resistor to 2.0 volts.
- 2. For AC tests, all input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from TP $_{\rm in}$ to input pin and TP $_{\rm out}$ to output pin. A 50-ohm termination to ground is located in each scope input. Unused outputs are connected to a 50-ohm resistor to ground.
- 3. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
- All voltage measurements are referenced to the ground terminal.
 Terminals not specifically referenced are left electrically open.