

TRIPLE EXCLUSIVE 10107

10107B,F: -30 to +85°C

DIGITAL 10,000 SERIES ECL

DESCRIPTION

The 10107 is a triple high speed 2-input Exclusive OR/Exclusive NOR gate. The 10107 is optimized for high speed comparator and parity functions, and has an excellent speed power product for this function. All inputs are terminated with a 50 k Ω resistor to VFF which eliminates the need to tie unused inputs low. The high impedance inputs and high output fanout are ideal for a transmission line environment. The 10107 contains a temperature tracking internal bias which insures that the threshold point remains in the center of the transition region over temperature. The 10107 has complementary outputs.

LOGIC DIAGRAM

TEMPERATURE RANGE

−30 to +85°C Operating Ambient

PACKAGE TYPE

B: 16-Pin Silicone DIP F: 16-Pin CERDIP

FEATURES

- FAST PROPAGATION DELAY
 - 2.0 ns TYP (INPUTS 4, 9, 14)
 - -2.8 ns TYP (INPUTS 5, 7, 15)
- LOW POWER DISSIPATION = 115 mW/PACKAGE TYP (NO LOAD)
- VERY HIGH FANOUT CAPABILITY
 - CAN DRIVE SIX 50 Ω LINES
- HIGH Z INPUTS INTERNAL 50 kΩ PULLDOWNS
- HIGH IMMUNITY FROM POWER SUPPLY VARIA-TIONS: $V_{EE} = -5.2 \text{ V} \pm 5\% \text{ RECOMMENDED}$
- COMPLEMENTARY OR/NOR OUTPUTS
- OPEN EMITTERS FOR BUSSING AND LOGIC CAPABILITY

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (at Listed Voltages and Ambient Temperatures).

	TEST VOLTAGE VALUES										
@ Test	(Volts)										
Temperature	VIH mex	VIL min	VIHA min	VILA max	VEE						
−30°C	-0 890	-1.890	-1.205	-1.500	-5.2						
+25^C	-0.810	-1.850	-1.105	-1,476	-5.2						
+85°C	-0.700	-1.825	-1.035	-1 440	-5.2						

Characteristic	Symbol	Pin Under Test	10107 Test Limits						TEST VOLTAGE APPLIED TO PINS LISTED BELOW							
			−30°C		+25°C		+85°C									
			Min	Max	Min	N	Vax	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(VCC) Gnd
Power Supply Drain Current	ΙE	8	-	-	-		28	-	-	mAdc	All Inputs	-		-	8	1,16
	linH	4,9,14			-	- :	265	-	-	µAde		_		-	8	1,16
	1	5,7,15	-	-	-	2	220			μAdc	•		-5.0	-	8	1,16
	linL		-	-	0.5		-	-		µ Adc	-	1.97	-	-	8	1,16
Logic "1" Output Voltage	VOH	2	-1.060	-0 890	-0 96	0 -0	810	-0.890	-0.700	Vdc	4.5	-	-	-	8	1,16
	1	2	-1.060	-0 890	-0.96	0 -0	810	-0 890	-0.700	lι	-	4,5	to the		1 1	1 1
	ł	3	-1 060	-0 890	-0.96	o	.810	0.890	-0.700	} •	4	6	-	-	1 4	
	l	3	-1.060	-0.890	-0.96	o -0	0.810	-0.890	~0.700		5	4	-	,	١,٠	١,,
Logic "O" Output Voltage	VOL	2	-1.890	-1.675	-1 85	0 -1	.650	-1 825	-1.615	Vdr	4	5	-	10-10	8	1,16
		2	-1 890	-1,675	-1.85	0 -1	.650	-1.825	-1.616	1	5	4	_	_	1	1 1
		3	-1.890	-1.675	-1.85	0 -1	.650	-1.825	-1.615	1	4,5	-		-		
		3	-1,890	-1.675	-1.85	0 -1	650	-1 825	-1.615	'	-	4,5	-0.	(C=)	'	' '
Logic "1" Threshold Voltage	VOHA	2	~1.080		-0 98	0	-	-0910	-	Vdc	5	14	4	-	8	1,16
		2	-1.080	-	-0.98	٥	-	-0910	- 1	1	-	-	-	4	l I	lι
		3	-1.080	-	-0.98	0	-	-0.910	-	l ♦	-	-	4			ا ا
		3	-1.080	-	-0.98	۱ ه	-	-0.910	-	l '	75	-	5	-	l . ' .	_ '
Logic "O" Threshold Voltage	VOLA	2	-	-1.655	-	-1	.630	-	-1.595	Vdc	-	-	4	1/4-1	8	1,16
		2	-	-1.666	-	-1	.630	-	-1.595	1 1	-	-	5	-	1	l t
		3	-	-1.665	-	-1	.630	-	-1,595		5	-	4	1.7		
		3	0-0	-1.655	-		630	-	~1.595	,	-	127	9	4	_ '	7
Switching Times [†]]]		ŀ	Min	Тур	Max			Unit	+1.1 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
(50-ohm load)																
Propagation Dalay	1++	Inputs	1.0	3.8	1,1	2.0	3.7	1,1	4.0	ns	6,7,16	*	Input	Corresponding	8	1,16
	t+-	4,9,or 14				1					1	-	4,9, or	Ex-OR/Ex-NOR		
	t-+	to either			111	•	1	1 1				-	14	Outputs		
	1	Output			111	'		1 1)) .		' '	-	J	J		
	1++	Inputs			1 []	2.8	1				4,9,14	-	Input	Corresponding		
	t+-	5,7, or 15			1 1		T					-	5,7, or	Ex-OR/Ex-NOR		
	t-+	to either		C.	1 1						†	-	15	Outputs	1 1	
	t	Output	- 1	1	111	'					,	-		Corresponding		
Rise Time (20% to 80%)	1+	**	1,1	3.6	1 1 1	2.5	3.6		3.8	10	4,9,14	-	Any Input	Ex-OR/Ex-NOR	240	4.
Fall Time (20% to 80%)	t-	**	1.1	3.6	ויו	2.5	35		3.8	,	4,9,14		Any Input		1	
- 61- 11000 (20% (0 (00%)				3.0	لــُــا	2.3	3.0		3.6	لــنــا	4,5,14	177	y mpor	Outputs	′	'

^{*}Individually test each input applying V_{1H} or V_{1L} to input under test.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY WAVEFORMS @ 25°C

NOTES:

- 1. Each ECL 10,000 series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50-ohm resistor to 2.0 volts.
- 2. For AC tests, all input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from $TP_{\rm in}$ to input pin and $TP_{\rm out}$ to output pin. A 50-ohm termination to ground is located in each scope input. Unused outputs are connected to a 50-ohm resistor to ground.
- Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
- All voltage measurements are referenced to the ground terminal.
 Terminals not specifically referenced are left electrically open.

^{**}Any Output

[†] Unused outputs connected to a 50-ohm resistor to ground.