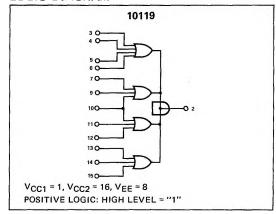


4-WIDE 4,3,3,3-INPUT 0119

10119B,F: -30 to +85°C

DIGITAL 10,000 SERIES ECL

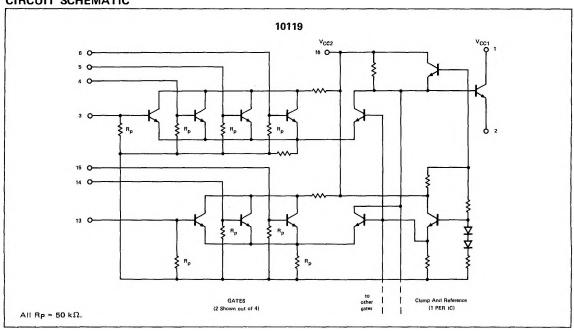

DESCRIPTION

The 10119 is a 4 wide 4-3-3-3 input OR-AND gate, Pin 10 is common to two of the input gates. This function is particularly useful in data control and multiplexing. The 10119 is optimized for high performance applications and has an excellent speed power product. All inputs are terminated with a 50 k Ω resistor to VEE which eliminates the need to tie unused inputs low. The high impedance inputs and high output fanout is ideal for a transmission line environment.

FEATURES

- FAST PROPAGATION DELAY FOR 2 LOGIC LEVELS = 2.3 ns TYP
- LOW POWER DISSIPATION = 100 mW/PACKAGE TYP (NO LOAD)
- HIGH FANOUT CAPABILITY
 CAN DRIVE 50 Ω LINE
- HIGH Z INPUTS INTERNAL 50 $k\Omega$ PULLDOWNS
- HIGH IMMUNITY FROM POWER SUPPLY VARIA-TIONS: VEE = -5.2 V ±5% RECOMMENDED
- OPEN EMITTER LOGIC AND BUSSING CAPABILITY

LOGIC DIAGRAM

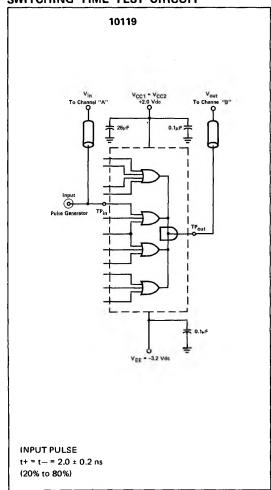

TEMPERATURE RANGE

-30 to +85

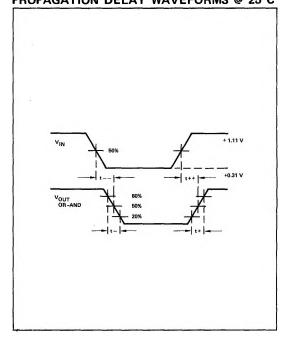
PACKAGE TYPE

B: 16-Pin Silicone DIP F: 16-Pin CERDIP

CIRCUIT SCHEMATIC


ELECTRICAL CHARACTERISTICS (at Listed Voltages and Ambient Temperatures).

	TEST VOLTAGE VALUES (Volta)												
@ Test													
Temperature	VIH mex	VIL min	VIHA min	VILA max	VEE								
−30,C	0.890	-1.890	-1.205	-1.500	-5.2								
+26°C	-0.810	1.850	-1.105	-1.475	-5.2								
+86°C	-0.700	-1.825	-1.035	-1.440	-5.2								


Characteristic Sy	}	Pin	10119 Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						
	Symbol	Under	-30°C		+25°C		+85°C								(VCC)	
		Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	20	26	-		mAdc	-	-	-		8	1,16
Input Current	linH	7	-	100	-	-	266	-		μAdc	7	-	-	-	В	1,16
		9	_	-	- 1	-	265	~		1 1	Я		-	-	1 1	1 1
		10			-	.0	370			1	10	-	-	-		
	link	,	_	-	0.6	_	jac.	-		μAdc	-	7	-	-	8	1,16
	1	9	-	_	1 1	-	-	-	144	1	-	9	-	-		
	J	10	-	-	1 7	-	-	-	14	1	-	10	-	-	١,٠	I
Logic "1" Output Voltage	∨он	2	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	3,10,15		-	-	8	1,16
Logic "O" Output Voltage	VOL	2	-2.000	-1.675	-1.990	-	-1.650	-1.920	-1.615	Vdc		3,10,15	-	_	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	_	-0.980	-		-0.910		Vric	10,15		3		8	1,16
Logic "O" Threshold Voltage	VOLA	2		-1.656			-1.630	-	-1.695	Vdc	10,15	-	-	3	8	1,16
Switching Times *											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
(60-ohm load)			i				į .			!		1				
	13+ 2+	2	1.4	3.9	1.4	2.3	3.4	1.4	3.8	ns	10,13	-	3	2	8	1,16
	13-2-	1 1	1.4	3.9	1.4	2.3	3.4	1.4	38	1 1	10,13	-	1 1	1 1	1 1	1 1
Rise Time (20% to 80%)	1+	1 1	0.8	4.1	1.5	2.5	4.0	1.5	4.6	ΙÌ	-	-	1 1	1 1	1 1	
Fall Time (20% to 90%)	1-	, ,	0.8	4.1	1.5	2.5	4.0	1.5	4.6] 7	-	-	Y	, ,	, ,	

^{*}Unused outputs connected to a 50-ohm resistor to ground.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY WAVEFORMS @ 25°C

NOTES

- 1. Each ECL 10,000 series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 2 mV with an air flow of 200 linear fpm, Outputs are terminated through a 50-ohm resistor to 2.0 volts.
- 2. For AC tests, all input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from $P_{\rm in}$ to input pin and $P_{\rm Out}$ to output pin. A 50-ohm termination to ground is located in each scope input. Unused outputs are connected to a 50-ohm resistor to ground.
- 3. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
- All voltage measurements are referenced to the ground terminal.
 Terminals not specifically referenced are left electrically open.