

DUAL 1 OF 4 DEMULTIPLEXER/DECODER (SELECTED OUTPUT IS LOW) 10171

10171F: -30 to +85°C, CERDIP

DIGITAL 10,000 SERIES ECL

FEATURES

- FAST PROPAGATION DELAY
 # 4.0 ns TYP ADDRESS TO OUTPUT
 - = 4.5 ns TYP ENABLE OR DATA TO OUTPUT
- LOW POWER DISSIPATION = 310 mW/PACKAGE TYP (NO LOAD)
- HIGH FANOUT CAPABILITY CAN DRIVE EIGHT 50 Ω lines
- TRUE PARALLEL DECODER ELIMINATES UN-EQUAL DELAY TIMES
- HIGH IMMUNITY FROM POWER SUPPLY VARIA-TIONS: VEE = -5.2 V ±5% RECOMMENDED
- HIGH Z INPUTS INTERNAL 50 kΩ PULLDOWNS
- OPEN EMITTER OUTPUTS
- MEETS ECL 10,000 SERIES STANDARD INTER-FACE SPECIFICATIONS

APPLICATIONS

- Dual 1 line to 4 line Demultiplexer
- Crossbar Switch Applications
- High Fanout 1 of 4 Decoder
- Memory Chip Select Decoder

TRUTH TABLE

	IN	PUTS	_	OUTPUTS							
EO	A1	A0	DAIN	DA0	DA1	DA2	DA3				
L	L	L	L	L	н	н	н				
L	L	L	(н	(н	н	[н	н				
L .	L	н	L	н	L	н	н				
L	L	н	н	н	н	н	н				
) L	н	L	L	н	н	L	н				
L	н	L	н	н	н	н	н				
L	н	н	L	н	н	н	L				
L	н	н	н	н	н	н	н				
н	φ	φ	φ	н	н	н	н				

DB is Similar. ϕ = Don't Care.

TEMPERATURE RANGE

● -30 to +85°C Operating Ambient

PACKAGE TYPE

• F: 16-Pin CERDIP

DESCRIPTION

The 10171 is a binary coded 2 line to dual 4 line decoder/demultiplexer. Outputs are normally high with the selected outputs going low. There are two parallel 1 line to 4 line non-inverting data paths and a common enable input. Each data input when high forces its four outputs high. The enable input when high forces all eight outputs high.

The 10171 is a true parallel decoder using internal emitter dotting techniques. Hence it eliminates unequal delay times found in other decoders. The 10171 is a low power, high speed device with high Z input pulldown resistors and open emitter outputs.

LOGIC DIAGRAM

V_{CC1} = 1, V_{CC2} = 16, V_{EE} = 8 POSITIVE LOGIC: HIGH LEVEL = '1'

TEST VOLTAGE VALUES

ELECTRICAL CHARACTERISTICS

6 Text												(Voita)					
(at Listed Voltages and Ambient Temperatures).											VIH mex	VIL min	VIHA min	VILA max	VEE		
										-30°C	-0.890	-1.890	-1.205	-1.600	5.2		
										+26°C	-0.810	-1.850	-1.105	-1,475	-5.2		
										+86° C	-0.700	-1.825	-1.035	-1.440	-5.2		
		Pin Under	10171 Test Limits								TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					1	
			-30°C		+25°C		+85°C								(Vcc)		
Characteristic	Symbol	Test	Min	Max	Min	Тур	Ma×	Min	Мах	Unit	VIH mex	VIL min	VIHA min	VILA max	VEE	Gnd	
Power Supply Drain Current	1E	8	-	-	-	60	76	-	-	mAdc	2,7,9,14,15	-	-	-	8	1,16	
Input Current	linH	14	-	-	-	- 1	265	-	-	µAdc	14		-	-	8	1,16	
	lint	14	-	-	05	-	-	-	-	µAdc	-	14	-	-	8	1,16	
Logic "1"	VOH	13	-1.060	-0 890	-0.960	~	-0.810	-0 890	-0 700	Vdc	14	-	- 1	-	8	1,16	
Output Voltage		13	-1.060	-0.890	-0 960	-	-0.810	-0.890	-0.700	Vdc	15	-	-	-	8	1,16	
Logic "0" Output Voltage	VOL	13	-1.890	-1.675	-1860	-	-1.650	-1.825	-1,615	Vdc		-	-	-	8	1,16	
Logic "1"	VOHA	13	-1 080		-0 980	-	-	-0.910		Vdc	-	-	14	-	8	1,16	
Threshold Voltage		13	-1.080	· –	-0 980	-	-	-0.910	-	Vdc	-	-	15	-	8	1,16	
Logic "0" Threshold Voltage	VOLA	13	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-	-		14	8	1,16	
Switching Times *													Puise in	Pulse Out	-3.2 V	+2.0 \	
(50-dhm load)				1		1											
Propagation Delay	19+13+	13	-	- (-	40	-	_	-	ns	-	-	9	13	8	1,16	
	19-13-	13	-	-	-	40	-	-	-		-	-	1	1	1	1	
Alse Time(20% to 80%)	113+	13	-	-	-	20	-	-	-	1	-	-	1	1	1		
Fail Time (20% to 80%)	13-	13	- 1	~	-	2.0	-	-	-	T	-	-			1		

*Unused outputs connected to a 50-ohm resistor to ground.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY WAVEFORMS @ 25°C

NOTES:

- Each ECL 10,000 series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 fpm is meintained. Voltage levels will shift approximately 6 mV with an air flow of 200 linear fpm. Outpouts are terminated through a 50-ohm resistor to -2.0 volts.
- 2. For AC tests, all input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TP_{in} to input pin and TP_{out} to output pin. A 50-ohm termination to ground is located in each scope input. Unused outputs are connected to a 50-ohm resistor to ground.
- 3. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.