512-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (512X1) 2505 1024-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (1024X1) 2512

2505-K • 2512-K

DESCRIPTION

The 2505 512-bit and the 2512 1024-bit recirculating dynamic shift registers consist of enhancement mode p-channel MOS devices integrated on a single monolithic chip. Internal recirculation logic plus write and read controls, together with 2 chip select controls are included on the chip.

BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS1

	PARAMETER	RATING	UNIT
TA	Temperature range ² Operating	0 to 70	°C
TSTG	Storage	-65 to 150	
PD	Power dissipation at $T_A > 70^{\circ} C^2$	535	mW
	Data and clock input voltages and supply voltages with respect to V _{CC}	0.3 to -20	V

512-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (512X1) 1024-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (1024X1)

2505-K • 2512-K

2505

DC ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{DD} = -5V \pm 5\%$ unless otherwise specified.

	DADAMETED		2505			2512			UNIT
PARAMETER		TEST CONDITIONS		Тур	Max	Min	Тур	Max	UNIT
VIL VIH VILC VIHC	Input voltage ³ Low High Clock Iow Clock high		-5.0 3.4 -12.0 4.0		0.6 5.3 -10.0 5.3	-5.0 3.4 -12.0 4.0		0.6 5.3 -10.0 5.3	v
Vol Voh1 Voh2	Output voltage Low High, driving 1 TTL load High, driving MOS	$R_{L} = 3.0K, 1 \text{ TTL load } (I_{L} = 1.6mA)^{4}$ $R_{L} = 3.0K, 1 \text{ TTL load } (I_{L} = 100\mu A)$ $R_{L} = 5.6K, C_{L} = 10pF$	2.4 3.6	-1.0 3.5 4.0		2.4 3.6	-1.0 3.5 4.0		v
ILI.	Input load current	$V_{IN} = 5.5V, T_A = 25^{\circ}C$		10	500		10	500	nA
	Leakage current Output Clock	$T_{A} = 25^{\circ}C$ $V_{\phi_{1}} = V_{\phi_{2}} = -12V, V_{DD} = -5V, V_{OUT} = -5.5V$ $V_{ILC} = -12V$		10 10	1000 1000		10 10	1000 1000	nA
IDD	Supply current	Continuous operation, ϕ pW = 150ns, 1MHz, V _{ILC} = -12V, T _A = 25° C, V _{DD} = -5.5V		15	25		25	35	mA
Сіл Соцт С <i>ф</i>	Capacitance Input Output Clock	1 MHz, $V_{AC} = 25mV p-p$ $V_1 = V_{CC}$ $V_O = V_{CC}$ $V \phi = V_{CC}$			5 5 50			5 5 100	pF

AC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{CC} = 5V^3$, $V_{DD} = -5V \pm 5\%$, $V_{ILC} = -11V$

	PARAMETER	TO FROM	FROM	TEST CONDITIONS	LIMITS			UNIT
FARAMETER					Min	Тур	Max	UNIT
Freq.	Clock data rep rate			$W = R = V_{CC}$.0005	3	2.5	MHz
tφpw	Clock pulse width				180			ns
tød	Clock pulse delay				10			ns
tr,tF	Clock pulse transition						1	μS
	Setup and hold time							ns
tow	Setup time	Input clock	1		150			
t _{DH}	Hold time	Data in	Input clock		10			
ta+,ta-	Delay time	Data out	Clock				100	ns
	Clock to read or chip select or write timing							ns
tR-,tcs-,t	•		{		0			
tR-,tCS+,T					ŏ			

NOTES

 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

2. For operating at elevated temperatures the device must be derated based on a +150°C maximum junction temperature and a thermal resistance of 150°C/W junction to ambient.

3. Guaranteed input levels are stated for worst case conditions including a \pm 5% variation in V_{CC} and a temperature variation of 0°C to +70°C. Actual input requirements with respect to V_{CC} are V_{IH} = V_{CC} - 1.85V and V_{IL} = V_{CC} - 4.15V.

4. Vol is a function of the input characteristics of the driven TTL/DTL gate I₀, and V_{CLAMP} and the value of the pull-down resistor (R_L).

5. All inputs are protected against static charge.

6. Parameters are valid over operating temperature range unless otherwise specified.

7. All voltage measurements are referenced to ground.

8. Manufacturer reserves the right to make design and process changes and improvements.

9. Typical values are at +25°C and typical supply voltage.

512-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (512X1) 2505 1024-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (1024X1) 2512

2505-K • 2512-K

TIMING DIAGRAM

signetics