2519

SILICON GATE MOS 2500 SERIES

DESCRIPTION

These Signetics 2500 Series Hex 32 and 40-bit recirculating static shift registers consists of enhancement mode P-channel silicon gate MOS devices integrated on a single monolithic chip. Internal recirculation logic plus TTL/DTL level clock signals are provided for maximum interfacing capability.

FEATURES

- TYPICAL CLOCK AND DATA RATE = 3MHz
- TTL/DTL COMPATIBLE CLOCK (SINGLE) PROVIDES **EXTREMELY LOW CLOCK CAPACITANCE**
- RECIRCULATION PATH ON CHIP
- TWO BIT LENGTHS AVAILABLE
- SINGLE-ENDED (BARE DRAIN) BUFFERS
- TTL. DTL COMPATIBLE SIGNALS.
- STANDARD PACKAGE 16 PIN DIP
- SIGNETICS P-MOS SILICON GATE PROCESS **TECHNOLOGY**

APPLICATIONS

LOW COST SEQUENTIAL ACCESS MEMORIES LOW COST STATIC BUFFER MEMORIES CRT REFRESH MEMORIES - LINE STORAGE **LINE PRINTERS CARD EQUIPMENT BUFFERS**

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

TRUTH TABLE

RECIRCULATE	INPUT	FUNCTION
1	0	Recirculate
1	1	Recirculate
0	o	"O" is Written
0	1	"1" is Written

PART IDENTIFICATION TABLE

PART NUMBER	BIT LENGTH	PACKAGE		
2518B	HEX 32	16-Pin Silicone DIP		
25181	HEX 32	16-Pin Ceramic DIP		
2519B	HEX 40	16-Pin Silicone DIP		
25191	HEX 40	16-Pin Ceramic DIP		

MAXIMUM GUARANTEED RATINGS (1)

Operating Temperature (2)

0°C to +70°C

Storage Temperature

-65°C to +150°C

Package Power Dissipation

at $T_A = 70^{\circ}C$

640 mW

Data and Clock Input Voltages and Supply Voltages with

Respect to V_{CC} +0.3V to -20V

· NOTES:

- Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
- For operating at elevated temperatures the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 125°C C/W junction to ambient.
- 3. All inputs are protected against static charge.
- Parameters are valid over operating temperature range unless specified.
- 5. All voltage measurements are referenced to ground.
- Manufacturer reserves the right to make design and process changes and improvements.
- 7. Typical values are at +25°C and nominal supply voltages.
- V_{CC} tolerance is ±5% Any variation in actual V_{CC} will be tracked directly by V_{1L}. V_{1H} and V_{OH} which are stated for a V_{CC} of exactly 5 volts.
- 9. VOL is dependent on RL and characteristics of driven gate.

DC CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = +5V$ (8); $V_{GG} = -12V \pm 5\%$ unless otherwise noted. (Notes: 3,4,5,6,7)

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
¹ LI	INPUT LOAD CURRENT		10	500	nA	V _{in} =-5.5V, T _A = 25°C
ILO	OUTPUT LEAKAGE CURRENT	İ	10	1000	nA	T _A = 25 ³ C
¹ LC	CLOCK LEAKAGE CURRENT	1	10	500	nA	VILC = GND, TA = 25°C
^I GG	POWER SUPPLY CURRENT		16	25	mA	CONTINUOUS OPERATION TA = 25°C F = 2MHz
VIL	INPUT "LOW" VOLTAGE			1,05	٧	
VIH	INPUT "HIGH" VOLTAGE	3.2		5.3	٧	
VILC	CLOCK INPUT "LOW" VOLTAGE			1.05	٧	
VIHC	CLOCK INPUT "HIGH" VOLTAGE	3.2	_	5.3	V	

TIMING DIAGRAM

AC CHARACTERISTICS $T_A = 0^{\circ}C$ to +70°C, $V_{CC} = +5V$;(8) $V_{GG} = -12V +5\%$, $V_{ILC} = 0.4V$ to 4.0V

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
FREQUENCY	CLOCK REP RATE	DC	3	2	MHz	See Max Frequency Curve
^t ØPW	CLOCK PULSE WIDTH	,300		100	μsec	
tφPW	CLOCK PULSE WIDTH	.200		DC	μsec	
t _R , t _F	CLOCK PULSE TRANSITION			5	μsec	
tDS	DATA WRITE (SET-UP) TIME	100			nsec	
^t DH	DATA TO CLOCK HOLD TIME	50			nsec	
t _A	CLOCK TO DATA OUT DELAY		300	350	nsec	
t _{RS}	RECIRCULATE SET-UP TIME	150			ns	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
^t RH	RECIRCULATE HOLD TIME	50			ns	
^t φ PW	CLOCK PULSE WIDTH	.200		DC	μsec	
C _{in}	INPUT CAPACITANCE		5	7	ρF	@ 1MHz; V _{in} = V _{CC} ; V _{AC} = 25mV p-p
Сф	CLOCK CAPACITANCE		6	7	pF	@ 1MHz; $V_{\phi} = V_{CC}$; $V_{AC} = 25 \text{mV p-p}$
VOL	OUTPUT "LOW" VOLTAGE		0.4		V	Note 9
Voн	OUTPUT "HIGH" VOLTAGE	3.6			٧	R_L = 7.5K Ω to V_{GG}

APPLICATIONS DATA

CHARACTERISTIC CURVES

CIRCUIT SCHEMATIC

