

DUAL 256-250-240 BIT | STATIC SHIFT REGISTERS

PRELIMINARY SPECIFICATION

SILICON GATE 2500 SERIES

2527 2528 2529

DESCRIPTION

The Signetics 2500 Series Dual 256, 250 and 240 bit recirculating static shift registers consist of enhancement mode P-channel silicon gate MOS devices integrated on a single monolithic chip.

FEATURES

- PUSH-PULL OUTPUTS
- TTL/DTL COMPATIBLE CLOCK PROVIDES EX-TREMELY LOW CLOCK CAPACITANCE
- RECIRCULATION PATH ON CHIP
- THREE BIT LENGTHS AVAILABLE
- HIGH FREQUENCY OPERATION 3 MHz TYPICAL CLOCK & DATA RATE
- TTL, DTL COMPATIBLE INPUTS AND OUTPUTS
- STANDARD PACKAGE 8 LEAD SILICONE DIP
- SIGNETICS P-MOS SILICON GATE PROCESS TECHNOLOGY

APPLICATIONS

LOW COST SEQUENTIAL ACCESS MEMORIES LOW COST STATIC BUFFER MEMORIES CRT REFRESH MEMORIES – LINE STORAGE DELAY LINES CASSETTE RECORDERS

BLOCK DIAGRAM

BIPOLAR COMPATIBILITY

The clock and signal inputs of these registers can be driven directly by standard bipolar integrated (TTL, DTL, etc.) or by MOS circuits. The outputs drive directly into TTL/DTL without requiring external resistors.

PIN CONFIGURATION (Top View)

TRUTH TABLE

RECIRCULATE	INPUT	FUNCTION		
0	0	Recirculate		
0	1	Recirculate		
1	0	"0" is Written		
1	1	"1" is Written		

NOTE: "0" = 0V; "1" = +5V

PART IDENTIFICATION TABLE

	PART NUMBER	BIT LENGTH	PACKAGE		
	2527V	Dual 256	8 Pin DIP		
i	2528V	Dual 250	8 Pin DIP		
	2529V	Dual 240	8 Pin DIP		

MAXIMUM GUARANTEED RATINGS (1)

Operating Ambient Temperature (2) 0°C to +70°C

Storage Temperature -65°C to +150°C

Package Power Dissipation

at $T_A = 70^{\circ}C$ 535 mW

Data and Clock Input Voltages and Supply Voltages with respect to V_{CC}

+0.3V to -20V

NOTES:

- Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
- For operating at elevated temperatures the device must be derated based on a +150° C maximum junction temperature and a thermal resistance of 150° C/W junction to ambient.
- 3. All inputs are protected against static charge.

- Parameters are valid over operating temperature range unless specified.
- 5. All voltage measurements are referenced to ground.
- Manufacturer reserves the right to make design and process changes and improvements.
- 7. Typical values are at +25°C and nominal supply voltages.
- V_{CC} tolerance is ±5%. Any variation in actual V_{CC} will be tracked directly by V_{IL}, V_{IH}, and V_{OH} which are stated for a V_{CC} of exactly 5 volts.

DC CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = +5V$ (8); $V_{GG} = -12V \pm 5\%$ unless otherwise noted.

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
I _{L1}	Input Load Current		10	500	nA	V _{IN} = 5.5V, T _A = 25°C
LC	Clock Leakage Current		10	500	nA	$V_{ILC} = 0V$, $T_A = 25^{\circ}C$
I _{GG}	Power Supply Current		28	35	mA	Continuous Operation F = 2.5 MHz, T _A = 25°C Outputs Open
V _{1L}	Input "Low" Voltage			1.05	V	
VIH	Input "High" Voltage	3.2		5.3	V	
VILC	Clock Input "Low" Voltage			1.05	V	
VIHC	Clock Input "High" Voltage	3.2		5.3	V	

AC CHARACTERISTICS $T_A = 0^{\circ}$ to $+70^{\circ}$ C, $V_{CC} = +5V^{\{8\}}$; $V_{GG} = -12V + 5\%$, $V_{IC} = 0.4$ to 4.0V

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
FREQUENCY	Clock Rep Rate	DC	2.5	1.5	MHz	See Maximum Frequency Curve
t _{φPW}	Clock Pulse Width	0.2	0.1	100	μs	
t _φ PW	Clock Pulse Width	0.2		DC	μs	
t _R t _F	Clock Pulse Transition			1	μs	
tDS	Data Set-up Time	50			ns	
t _{DH}	Data Hold Time	50			ns	
t _A	Clock to Data Out Delay		330	450	ns	I _{OL} = 1.6mA
tRS	Recirculate Set-up Time	50			ns	
₹RH	Recirculate Hold Time	50			ns	
CIN	Input Capacitance			5	pF	@ 1 MHz; V _{IN} = V _{CC} ; V _{AC} = 25mV p-p
c_ϕ	Clock Capacitance			5	pF	@ 1 MHz; $V_{\phi} = V_{CC}$; $V_{AC} = 25mV p \cdot p$
V _{OL}	Output "Low" Voltage			0.4	V	1 TTL load (I _L = 1.6mA)
Voнi	Output "High" Voltage Driving 1 TTL Load	3.0	3.5		v	 1 TTL load (I _I = 100μA)
V _{OH2}	Output "High" Voltage Driving MOS	3.5	4.0			

TIMING DIAGRAM

APPLICATIONS INFORMATION

SCHEMATIC DIAGRAM

CLOCKING WAVEFORMS

CHARACTERISTIC CURVES

APPLICATIONS INFORMATION (Cont'd)

