

DESCRIPTION

The 2532 static shift register consists of enhancement mode p-channel silicon gate MOS devices integrated on a single monolithic chip. Each of the four 80-bit registers is provided with an independent input, push-pull output and recirculation control. The single phase clock is common to all 4 registers. All inputs and outputs including the clock interface directly with TTL or DTL circuits without external components.

Data is entered when the clock is at a logic high. Data is shifted when the clock goes low. When the recirculate control is at a logic high, data recirculates and is continuously available at the output, data input is inhibited. When the recirculate control is at a logic low, data is entered.

FUNCTION

"0" is written

"1" is written

Recirculate

Recirculate

INPUT

0

1

0

1

PIN CONFIGURATION

TRUTH TABLE

RECIRCULATE

0

0

1

1

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS1

	PARAMETER	RATING	UNIT	
TA Tstg Pd	Temperature range Operating ² Storage Power dissipation at T _A = 70° C Data and clock input voltages and supply voltages with respect to V _{CC}	0 to 70 -65 to 150 640 +0.3 to -20	°C mW V	

QUAD 80-BIT STATIC SHIFT REGISTER (80X4)

2532-N

2532

DC ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{GG} = -12V \pm 5\%$ unless otherwise specified.

PARAMETER		TEST CONDITIONS	LIMITS			UNIT
		TEST CONDITIONS	Min	Тур	Max	UNIT
	Input voltage ³					v
ViL	Low				0.6	
Viн	High		3.4		5.3	
VILC	Clock low				0.6	
VIHC	Clock high		3.4		5.3	
	Output voltage					V
Vol	Low	$I_{OL} = 1.6 mA$			0.5	
Vон	High	$I_{OH} = 100 \mu A$	3.8			
	Supply current					mA
lgg		Continous operation,		6	10	
		f = 1.5MHz, T _A = 25°C, Outputs open				
lcc				12	20	
ILI.	Input load current	VIN - 5.5V, TA -25°C		10	500	nA
ILC	Clock leakage current	$V_{ILC} = OV, T_A = 25^{\circ}C$		10	500	nA
	Capacitance	At 1MHz, V _{AC} = 25mV p-p	1	1		pF
CIN	Input	$V_{IN} = V_{CC}$			5	
C¢	Clock	$V\phi = V_{CC}$			5	

AC ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{GG} = -12V \pm 5\%$,

 $I_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{GG} = -12V \pm 5\%$, Input rise and fall times = 10ns, Output load = 1TTL gate

PARAMETER		то	FROM		LIMITS			
				TEST CONDITIONS	Min	Тур	Max	UNIT
Freq.	Clock rep rate			See timing diagram	dc	3.0	1.5	MHz
tøpw tøpw	Pulse width Clock Clock				0.33 0.33		100 dc	μS
tR,tF	Clock pulse transition						5	μS
tos toн	Setup and hold time Setup time Hold time	φin Data in	Data in ¢in		120 70			ns
trs tri	Setup time Hold time	<pre></pre>	Recirculate øin		150 70			
tA	Delay time	Data out	Clock	I _{OL} = 1.6mA			400	ns

NOTES

 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

 For operating at elevated temperatures the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 125°C/W junction to ambient.

 Guaranteed input levels are stated for worst case conditions including a ±5% variation in V_{CC} and a temperature variation of 0°C to +70°C. Actual input requirements with respect to V_{CC} are V_{IH} = V_{CC} -1.85V and V_{IL} = V_{CC} -4.15V.

4. All inputs are protected against static charge.

5. Parameters are valid over operating temperature range unless specified.

6. All voltage measurements are referenced to ground.

7. Manufacturer reserves the right to make design and process changes and improvements.

8. Typical values are at +25°C and typical supply voltages.

QUAD 80-BIT STATIC SHIFT REGISTER (80X4)

TIMING DIAGRAM

2532-N

2532