

FULLY DECODED, 2048-BIT RANDOM ACCESS MEMORY 2548

SILICON GATE MOS 2500 SERIES

DESCRIPTION

The Signetics 2548 2048x1 Dynamic Random Access Memory employs enhancement mode P-channel devices integrated on a single monolithic chip. The device is fully decoded and contains built-in refresh amplifiers. All address input data and control lines are directly TTL compatible. Clocking is performed by three high level (OV to -20V) nonoverlapping clock inputs. (Use Signetics N575 Clock Driver.) The output data line supplies a minimum "1" level output of $600\mu A$. (Use Signetics 8T25 Sense Amplifier.)

FEATURES

- HIGH STORAGE DENSITY
- READ ACCESS TIME 345ns MAX.
- READ/WRITE CYCLE TIME 560ns MAX.
- REFRESH PERIOD 2mS FOR 0°C TO 70°C AMBIENT
- AUTOMATIC REFRESH OF A 64 BIT COLUMN DURING EACH READ
- LOW POWER DISSIPATION 150µW/BIT MAX. (AT 1.8MHz)
- STANDBY POWER 2µW/BIT MAX.
- STANDARD 22 PIN DIPPACKAGE, 400 MIL ROW SPACING
- V_{CC} = 5V, V_{BB} = 8.5V, V_{DD} = -15V
- ALL INPUTS EXCEPT CL1, CL2, CL3 ARE TTL COMPATIBLE
- ADDRESS AND CHIP SELECT INPUT LATCHES
 PROVIDED ON CHIP
- CHIP SELECT PERMITS SIMPLE MEMORY EX-PANSION

APPLICATIONS

CORE MEMORY REPLACEMENT DOUBLED STORAGE CAPACITY (OVER 1K RAMS) BUFFER STORES MAIN MEMORY

GENERAL TIMING AND OPERATION

PIN CONFIGURATION (TOP VIEW)

BIPOLAR COMPATIBILITY

All address lines, control lines and data input lines are directly TTL compatible and defined in positive logic. The three clocks require high level drivers. The data out line is a non-inverted current source output requiring a sense amplifier or high impedance gate. (Signetics N575 Clock Driver and 8T25 Sense Amplifier are recommended.)

GENERAL TIMING AND OPERATION

- 1. During period 1 internal nodes are precharged. The rising edge of CL1 (end of Period 1) clocks input address and CS data into storage elements.
- 2. During period 2 the row and column decoders select the desired bit.
- 3. During period 3 the information in the bit is exclusive OR'd with the selected information contained in the column inversion memory. The result is sent to the output. The output information is stable near the end of period 3.
- 4. During period 4 the write enable circuitry is activated. The internal data-in level is determined by exclusive OR'ing the actual input with the selected information contained in the column inversion memory.
- 5. If a write is desired during period 5, data is written into the selected bit. The information stored in all other bits sharing the same addressed column is inverted and refreshed. The appropriate bit of the column inversion memory is also inverted and refreshed.

If a refresh is desired during period 5, the information stored in all bits sharing the same addressed column is inverted and refreshed. The appropriate bit of the column inversion memory is also inverted and refreshed.

PART IDENTIFICATION

TYPE	PACKAGE	OP. TEMP. RANGE
25481	22-Pin Ceramic DIP (0.4")	0-70°C
2548XC	22-Pin Plastic DIP	0-70°C

NOTE: "0" = 0 V, "1" = +5 V

MAXIMUM GUARANTEED RATINGS⁽¹⁾

Operating Ambient Temperature	0°C to 70°C
Storage Temperature	–65°C to 150°C
All Input or Output Voltage with respect	+0.3 V to -25 V
to the most positive supply $V_{f BB}$	
Supply Voltages with respect to VBB	+0.3 V to -25 V
Package Power Dissipation at $T_A = 25^{\circ}C$	800 mW

NOTES:

- Stresses above those listed under "Maximum Guaranteed Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
- 2. The V_{BB} supply should be applied at or before the V_{CC} supply.
- 3. t_r and t_f = 20ns: for all inputs. All timing measurements are made at the 50% points.
- Only CL1 and CL2 are required for a short read cycle. 60 ns after CL2 the next cycle can start. No refresh occurs when using short read cycles.

BLOCK DIAGRAM

DC CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5$ V, $V_{BB} = 8.5$ V ±0.5 V, $V_{DD} = -15 \pm 1$ V unless otherwise noted.⁽²⁾

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
LC	Clock Load Current			5.0	μA	V _{CLK} = V _{DD}
ILI	Input Load Current			1.0	μA	VIN = V _{DD}
						CL1 = V _{DD}
ILO	Output Leakage Current			1.0	μΑ	$V_{OUT} = V_{DD}, CL2 = V_{CC}$
						CL3 = V _{CC}
IDD	Average Power Supply Current			10.0	mA	$T_{A} = 25^{\circ}C, T_{CYC} = 560 \text{ ns}$
IBB	Average Power Supply Current			500.0	μΑ	$T_A = 25^{\circ}C, T_{CYC} = 560 \text{ ns}$
VIL	Input Low Voltage	V _{DD} –1.0		V _{CC} -4.5	V	
⊻ін	Input High Voltage	V _{CC} –1.5		VCĊ	v	
VILC	Clock Input Low Voltage	-16		-14	v	
∨інс	Clock Input High Voltage	V _{CC} –1.5		Vcc	V	
юн	Output High Source Current	0.6			mA	RL = 1.1 K connected to 0 V
IOL	Output Low Source Current			25.0	μA	R_{L} = 1.1 K connected to 0 V
CADD	Address Input Capacitance			5.0	pF	
CCS	CS Input Capacitance			5.0	рF	
CRW	R/W Input Capacitance			5.0	рF	- VIN = V _{CC} , = 1 MHz
CDI	DI Input Capacitance			6.0	рF	
CCL1	CL1 Input Capacitance			35.0	рF	
CCL2	CL2 Input Capacitance			16.0	рF	
C _{CL3}	CL3 Input Capacitance			25.0	pF_	
Соит	Output Capacitance		_	5.0	pF	V _{CL1} = V _{DD} , V _{OU} T = V _{CC} V _{CL2} = V _{CL3} = V _{CC} , f = 1 MHz

AC CHARACTERISTICS (3)

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5 V$, $V_{BB} = 8.5 V \pm 0.5 V$, $V_{DD} = -15 V \pm 1 V$ unless otherwise noted.⁽²⁾

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
General Memory Cycle Timing						
TREF	Time Between Refresh			2.0	ms	
T1PW	CL1 Pulse Width	75			ns	
T ₁₂	CL1 to CL2 Gap	75			ns	
T _{2PW}	CL2 Pulse Width	240			ns	
T ₂₃	CL2 to CL3 Gap	50			ns	
T _{3PW}	CL3 Pulse Width	70			ns	
T ₃₁	CL3 to CL1 Gap	50			ns	
TAS	Address & Chip Select Setup Time	40			ns	
TAH	Address & Chip Select Hold Time	60			ns	
TOUT	CL2 to Output Access Time	230			ns	R _L = 1.1 K, C _L = 30pF V _{REF} = 500 μA
тсүс	Cycle Time	560			ns	
T _{SRC} (4)	Short Read Cycle Time	450			ns	
T ₂₁ (4)	CL2 to CL1 Gap (for SRC only)	60			ns	
Read/Refresh Cycle Timing						
TACC1	CL1 to Output Access	380			ns	T1PW + T12 + TOUT
TACC1	Address or Chip Select to Output	345			ns	T _{AS} + T ₁₂ + T _{OUT}
TRWS3	Read Setup Time	60			ns	
T _{RWH3}	Read Hold Time	20			ns	
Read/Write	Cycle Timing					
TRWS2	Write Setup Time	0			ns	
T _{DS1}	Data High Setup Time	100			ns	
T _{DS0}	Data Low Setup Time	60			ns	
TDH	Data Hold Time	20			ns	

GENERAL NOTES:

- A. Everytime a column is accessed during a normal memory cycle (either a READ or a WRITE, but not a SHORT READ), all 64 bits in that column are refreshed.
- B. Refreshing continues to occur even if the device is not selected ($\overline{CS} = "1"$).
- C. When CS = "1" the Data In and Read/Write inputs are disabled so that no data can be written into the device. When CS = "1", the output of the device is left floating so that many device outputs can easily be OR'ed together.
- D. An through A_4 are the column address lines. A5 through A_{10} are the row address lines.
- E. For proper refreshing, all column addresses (32 of them) must be selected at least once during every 2 ms period.
- F. Inputs A0 through A10 and CS are essentially clocked into the device on the rising edge of CL1. They are then held by internal latches for the duration of each memeory cycle.
- G. The RAM is non-inverting such that data written in as a "1" (DI = "1") is read out as a positive current greater than 600 µA. Data written in as a "0" is read out as a very small current less than 25 µA.

TIMING DIAGRAM

