2680/2680-1/2680-2

2680-F,I,N • 2680-1-F,I,N • 2680-2-F,I,N

DESCRIPTION

The 2680 incorporates the latest memory design features and can be used in a wide variety of applications, from those which require very high speed to ones where low cost and large bit capacity are the prime criteria.

The 2680 must be refreshed every 2ms. This can be accomplished by performing a read cycle at each of the 64 row addresses (A_0 - A_5). The chip select input can be either high or low for refresh.

The 2680 has been designed with minimum production costs as a prime criterion. It is fabricated using n-channel silicon gate MOS technology, which is an ideal choice for high density integrated circuits. The 2680 uses a single transistor cell to minimize the device area. The single device cell, along with unique design features in the on-chip peripheral circuits, yields a high performance and low cost memory device.

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER		RATING	UNIT
	Temperature range		°C
TA	Operating under bias	0 to 70	
Tstg	Storage	-65 to 150	
PD	Power dissipation	1.25	w
	All input or output voltages with respect to the most negative supply voltage, V _{BB}	20 to -0.3	V
	Supply voltage, V_{DD} , V_{CC} , and V_{SS} with respect to V_{BB}	20 to -0.3	v

2680-F,I,N • 2680-1-F,I,N • 2680-2-F,I,N

2680/2680-1/2680-2

RECOMMENDED OPERATING CONDITIONS

PARAMETER		LIMITS				
	Min	Тур	Max	UNIT		
Supply voltage				v		
Vcc	4.75	5	5.25			
VDD	11.4	12	12.6			
Vss		0				
VBB	-4.5	-5	-5.5			

DC ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$ unless otherwise specified

	PARAMETER	TEST CONDITIONS		UNIT			
			Min	Typ ²	Max	UNIT	
VIL VIH VILC VIHC	Input voltage Low High CE Iow CE high		-1.0 2.4 -1.0 V _{DD} -1		0.6 V _{CC} +1 1.0 V _{DD} +1	v	
VoL Voн	Output voltage Low High	I _{OL} = 2.0mA I _{OH} = -2.0mA	0.0 2.4		0.45 Vcc	V	
ILC ILI	Input load current CE All inputs except CE	$V_{IN} = 0 \text{ min to } V_{IHC} \text{ max}$ $V_{IN} = 0 \text{ min to } V_{IH} \text{ max}, \text{ CE} = V_{ILC} \text{ or } V_{IHC}$.01 .01	2 10	μA	
ILO	Output leakage current high impedance state	$CE = V_{ILC} \text{ or } \overline{CS} = V_{IH}, V_0 = OV \text{ to } 5.25V$.01	10	μA	
IDD1 IDD2	Supply current (V _{DD}) During CE off ³ During CE on	$CE = -1V \text{ to } 6V$ $CE = V_{IHC}, \overline{CS} = V_{IL}$		50	200 60	μA mA	
IDDAV1	Average V _{DD} current	Cycle time = 400ns, \overline{CS} = V _{IL} , t _{CE} = 230ns, T _A = 25° C		35	54	mA	
ICC1 IBB	Supply current V _{CC} 4 V _{BB}	$CE = V_{ILC} \text{ or } \overline{CS} = V_{IH}$.01 5	10 100	μA	
Cad Cce Cin Cout	Capacitance⁵ Address, CS CE Input and WE Output	$V_{IN} = V_{SS}$ $V_{IN} = V_{SS}$ $V_{IN} = V_{SS}$ $V_{OUT} = OV$		4 13 5 4	6 25 10 7	pF	

2680/2680-1/2680-2

2680-F.I.N • 2680-1-F.I.N • 2680-2-F.I.N

AC ELECTRICAL CHARACTERISTICS Over recommended supply voltage range,

$T_A = 0^{\circ}C$ to $70^{\circ}C$, $t_T = 20$ ns, $C_L = 50$ pF,

Load = 1 TTL gate, $t_{ACC} = t_{AC} + t_{CO} + 1t_T$

				2680			2680-1			2680-2			
	PARAMETER	то	FROM	Min Typ		Max	Min	Тур	Max	Min	Тур	Max	UNIT
tREF	READ, WRITE, AND READ MODIFY/ WRITE CYCLE Time between refresh					2			2			1	ms
tac tah	Setup and hold time Setup time Hold time	CE Address	Address CE	0 100			0 100			10 100			ns
tcc t⊤ tcF	CE off time CE transition time CE high impedance state	Output	CE off	130 10 0		40	130 10 0		40	380 10 0		40	ns ns ns
tcy tce tco tacc twL twc	READ CYCLE Cycle time CE on time CE output delay time Access time	Output WE CE on	Address CE WE	400 230 0 0		4000 180 200	470 300 0 0		4000 250 270	800 380 0 0		4000 320 350	ns ns ns ns ns ns
tcy tce tw tcw	WRITE CYCLE Cycle time CE on time	CE off WE	WE CE	400 230 150 150		4000	470 300 150 150		4000	800 380 200 150		4000	ns ns ns ns
tow toн	Setup and hold time Setup time ⁶ Hold time	WE DIN	D _{IN} CE	0	ļ		0			0 0			ns
twp	Pulse width WE			50			50			100			ns
trwc tcrw tw twc	READ, MODIFY, WRITE CYCLE Cycle time CE width during cycle	CE off CE on	WE	520 350 150 0		4000	590 420 150 0		4000	960 540 200 0		4000	ns ns ns ns
tow toh	Setup and hold time Setup time Hold time	WE Din	Din CE	0			0			0 0	-		ns
twp	Pulse width WE			50			50			100			ns
tco tacc	Delay time Access time	Output	CE			180 200			250 270			320 350	ns ns

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability 2. Typical values are for $T_A = 25^{\circ}C$ and typical power supply voltages.

3. The IDD and ICC currents flow to Vss. The IBB current is the sum of all leakage currents.

4. During CE on Vcc supply current is dependent on output loading Vcc is connected to output buffer only

5. Capacitance measured with Boonton Meter or effective capacitance calculated from the equation with the current equal to a constant 20mA.

If WE is low before CE goes high then DIN must be valid when CE goes high.

 If WE is low before CE goes high then D_{IN} must be valid when CE goes ingin.
 The only requirement for the sequence of applying voltage to the device is that V_{DD}, V_{CC}, and V_{SS} should never be .3V more negative than $\mathsf{V}_{\mathsf{B}\mathsf{B}}$

2680/2680-1/2680-2

2680-F,I,N • 2680-1-F,I,N • 2680-2-F,I,N

TIMING DIAGRAMS

signetics

2680/2680-1/2680-2

2680-F,I,N • 2680-1-F,I,N • 2680-2-F,I,N

TIMING DIAGRAMS (Cont'd)

NOTES

A. For Refresh cycle row and column addresses must be stable before tac and remain stable for entire

tan period.

B VIL max is the reference level for measuring timing of the addresses, CS, WE, and DIN.

C. VIH min is the reference level for measuring timing of the addresses, $\overline{\text{CS}}, \overline{\text{WE}}, \text{and } D_{\text{IN}}.$

D. Vss +2.0V is the reference level for measuring timing of CE.

E. V_{DD} -2V is the reference level for measuring timing of CE. F. Vss +2.4V is the reference level for measuring the timing of D_{OUT}.