

DESCRIPTION

The SE/NE 527 is a high speed analog voltage comparator which, for the first time mates state-of-the-art Schottky diode technology with the conventional linear process. This allows simultaneous fabrication of high speed T^2L gates with a precision linear amplifier on a single monolithic chip.

The SE/NE 527 is similar in design to the Signetics SE/ NE 529 voltage comparator except that it incorporates a "Emitter Follower" input stage for extremely low input currents. This opens the door to a whole new range of applications for analog voltage comparators.

FEATURES

- 15 nsec PROPAGATION DELAY
- COMPLEMENTARY OUTPUT GATES
- TTL OR ECL COMPATIBLE OUTPUTS
- WIDE COMMON MODE AND DIFFERENTIAL VOLT-AGE RANGE

APPLICATIONS

A/D CONVERSION ECL TO TTL INTERFACE TTL TO ECL INTERFACE MEMORY SENSING OPTICAL DATA COUPLING

BLOCK DIAGRAM

EQUIVALENT CIRCUIT

LINEAR INTEGRATED CIRCUITS

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (V1 ⁺)	+15 volts
Negative Supply Voltage (V ₁ -)	-15 volts
Gate Supply Voltage (V2 ⁺)	+7 volts
Output Voltage	+15 volts
Differential Input Voltage	±5 volts
Input Common Mode Voltage	±6 volts
Power Dissipation	600mW
Operating Temperature Range	
NE 527	0°C to +70°C
SE 527	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering 60 seconds)	+300°C

ELECTRICAL CHARACTERISTICS $(V_1^+ = +10V, V_1^- = -10V, V_2^+ = +5.0V, V_{in} = 0V)$

PARAMET	TEST CONDITIONS	SE 527			NE 527			UNITS
		MIN	ТҮР	МАХ	MIN	ТҮР	MAX	
INPUT CHARACTERISTICS						-		
Input Offset Voltage @25°C				4			6	mV
over temperature range			}	6	1		10	mV
Input Bias Current @25°C	$V_1^+ = 10V, V_1^- = -10V$			2			2	μΑ
over temperature range	$V_{in} = 0V$			4			4	μA
Input Offset Current @25°C				0.5			0.75	μA
over temperature range	$V_{in} = 0V$			1			1	μA
Voltage Gain	$T_A = 25^{\circ}C$		5			5		سم V/mV
Input Resistance	T _A = 25°C, f = 1 kHz		500			500		кΩ
			500			500		K32
GATE CHARACTERISTICS								
Output Voltage								
"1" State	$V_2^+ = 4.75V, I_{source} = -1mA$	2.5	3.3		2.7	3.3		v
"O" State	V2 ⁺ = 4.75V, I _{sink} = 10mA			0.5			0.5	V
Strobe Inputs								
"O" Input Current	V_2^+ = 5.25V, V_{strobe} = 0.5V			··2			-2	mA
"1" Input Current @25°C	V ₂ ⁺ = 5.25V, V _{strobe} = 2.7V			50			100	μΑ
over temperature range				200			200	μΑ
"0" Input Voltage	V ₂ ⁺ = 4.75∨			0.8			0.8	v
"1" Input Voltage	$V_2^{+} = 4.75V$	2.0			2.0			v
Short Circuit								
Output Current	$V_2^+ = 5.25V, V_{out} = 0V$	-40		-100	-40		-100	mA
POWER SUPPLY								
REQUIREMENTS							ĺ	
Supply Voltage		10						
V_1^+		5		10	5		10	v
v ₁ -		-6		-10	-6		-10	v
v_2^+		4.5	5	5.5	4.75	5	5.25	v
2 Supply Current	$V_1^+ = 10V, V_1^- = -10V$	4.5	5	5.5	4.75	5	5.25	v
Supply Current	$V_2^+ = 5.25V$			-				
. +	$T_{A} = 125^{\circ}C$			2.25				0
'1 ⁺				3.25				mA
	$T_A = 25^{\circ}C$			3.75				mA
	$T_A = -55^{\circ}C$			4.0				mA
	0°C ≤ T _A ≤ 70°C						5	mA
'1 ⁻	T _A = 125°C			7.0				mA
	T _A = 25°C			7.5				mA
	T _A = -55°C			8.5				mA
	0°C ≤ T _A ≤ 70°C				ļ		10	mA
1 ₂ +	T _A = 125 ^o C			15				mA
	$T_A = 25^{\circ}C$			16			-	mA
	T _A ≑ -55°C			18		÷		mΑ
	0°C ≤ T _A ≤ 70°C						20	mA
TRANSIENT RESPONSE	V _{in} = 50 mV overdrive					1		
Propagation Delay Time								
	T _A = +25°C		14			14		ns
		1	16			16		
t _{pd} (1) Dalau haturaa Qutaut	$T_A = +25^{\circ}C$	1						ns
Delay between Output	Τ _Δ = +25°C		2		1	2		ns
A and B	321							
Strobe Delay Time								
Turn On	T _A = +25°C	1	6			6		ns
Turn Off	$T_A = +25^{\circ}C$		6			6		ns

APPLICATIONS

One of the main features of the device is that supply voltages (V_1^+, V_1^-) need not be balanced, as indicated in the following diagrams. For proper operation, however, negative supply (V_1^-) should always be at least six volts more negative than the ground terminal (pin 6). Input Common Mode range should be limited to values

TYPICAL APPLICATIONS

of two volts less than the supply voltages (V_1^+ and V_1^-) up to a maximum of ±6 volts as supply voltages are increased.

It is also important to note that Output A is in phase with Input A and Output B is in phase with Input B.

TYPICAL PERFORMANCE CURVES

1

