54/74195 54LS/74LS195A UNIVERSAL 4-BIT SHIFT REGISTER

DESCRIPTION — The '195 is a high speed 4-bit shift register offering typical shift frequencies of 50 MHz. It is useful for a wide variety of register and counting applications. The '195 is pin and functionally identical to the 9300, 93L00 and 93H00.

- TYPICAL SHIFT RIGHT FREQUENCY OF 50 MHz ('LS195A)
- ASYNCHRONOUS MASTER RESET
- J, K INPUTS TO FIRST STAGE
- FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	ουτ	V _{CC} = +5.0 V ±5%, T _A = 0°C to +70°C	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	TYPE
Plastic DIP (P)	А	74195PC, 74LS195APC		9B
Ceramic DIP (D)	А	74195DC, 74LS195ADC	54195DM, 54LS195ADM	6B
Flatpak (F)	А	74195FC, 74LS195AFC	54195FM, 54LS195AFM	4L

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW	
PE	Parallel Enable Input (Active LOW)	1.0/1.0	0.5/0.25	
$P_0 - P_3$	Parallel Data Inputs	1.0/1.0	0.5/0.25	
J	First Stage J Input (Active HIGH)	1.0/1.0	0.5/0.25	
N N N N N N N N N N N N N N N N N N N	First Stage K Input (Active LOW)	1.0/1.0	0.5/0.25	
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	0.5/0.25	
MR	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	0.5/0.25	
Q0 — Q3	Parallel Outputs	20/10	10/5.0 (2.5)	
\overline{Q}_3	Complementary Last Stage Output (Active LOW)	20/10	10/5.0 (2.5)	

FUNCTIONAL DESCRIPTION — The Logic Diagram and Truth Table indicate the functional characteristics of the '195 4-bit shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

The '195 has two primary modes of operation, shift right $(Q_0 \rightarrow Q_1)$ and parallel load, which are controlled by the state of the Parallel Enable (\overrightarrow{PE}) input. When the \overrightarrow{PE} input is HIGH, serial data enters the first flip-flop Q_0 via the J and \overrightarrow{K} inputs and is shifted one bit in the direction $Q_0 \rightarrow Q_1 \rightarrow Q_2 \rightarrow Q_3$ following each LOW-to-HIGH clock transition. The J \overrightarrow{K} inputs provide the flexibility of the JK type input for special applications, and the simple D type input for general applications by tying the two pins together. When the \overrightarrow{PE} input is LOW, the '195 appears as four common clocked D flip-flops. The data on the parallel inputs P_0, P_1, P_2, P_3 is transferred to the respective Q_0 , Q_1 , Q_2 , Q_3 outputs following the LOW-to-HIGH clock transition. Shift left operation ($Q_3 \rightarrow Q_2$) can be achieved by tying the Q_0 outputs to the $P_n - 1$ inputs and holding the \overrightarrow{PE} input LOW.

All serial and parallel data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. Since the '195 utilizes edge-triggering, there is no restriction on the activity of the J, \overline{K} , P_n and \overline{PE} inputs for logic operation — except for the setup and release time requirements. A LOW on the asynchronous Master Reset (\overline{MR}) input sets all Q outputs LOW, independent of any other input condition.

OPERATING MODES		I	NPL	JTS		OUTPUTS				
	MR	PE	J	ĸ	Pn	Qo	Q1	Q2	Q3	\overline{Q}_3
Asynchronous Reset	L	Х	х	Х	х	L	L	L	L	н
Shift, Set First Stage Shift, Reset First Stage Shift, Toggle First Stage Shift, Retain First Stage	ннн	h h h h	h I h I	h I I h	x x x x	H L qo qo	q 0 q 0 q 0 q 0	q1 q1 q1 q1	q2 q2 q2 q2	q2 q2 q2 q2 q2
Parallel Load	н	1	x	х	pn	Po	p1	p2	рз	īрз

MODE SELECT TABLE

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

I = LOW voltage level one setup time prior to the LOW to HIGH clock transition.

h = HIGH voltage level one setup time prior to the LOW to HIGH clock transition.

 $p_n(q_n)$ = Lower case letters indicate the state of the referenced input (or output) one setup time prior to the LOW to HIGH clock transition.

195

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS	
		Min	Max	Min	Max	•••••		
lcc	Power Supply Current		63		21	mA	V _{CC} = Max, PE = Gnd J, K, Pn, MR = 4.5 V CP =	
AC CHAR	ACTERISTICS: $V_{CC} = +5.0 \text{ V}, \text{ T}_{A} =$	T	(See \$ / 74		n 3 for 74LS	waveforms a	nd load configurations)	
AC CHARA SYMBOL	ACTERISTICS: V _{CC} = +5.0 V, T _A =	54 / CL =	/74		4LS	waveforms a	nd load configurations)	
		54 / CL =	/ 74 15 pF 400 Ω	54/7 CL =	4LS			
SYMBOL		54/ CL = RL =	/ 74 15 pF 400 Ω	54/7 CL =	7 4LS 15 pF		CONDITIONS	
	PARAMETER	54/ CL = RL = Min	/ 74 15 pF 400 Ω	54/7 CL = Min	7 4LS 15 pF	UNITS		

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}, T_A = +25^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS	
		Min	Max	Min	Max	UNIT U		
ts (H) ts (L)	Setup Time HIGH or LOW J, \overline{K} or P_n to CP	20 20		15 15		ns		
t _h (H) t _h (L)	Hold Time HIGH or LOW J, \overline{K} or P_n to CP	0		0 0		ns	Fig. 3-6	
t _s (H) t _s (L)	Setup Time HIGH or LOW PE to CP	25 25		25 25		ns		
 t _h (H) t _h (L)	Hold Time HIGH or LOW PE to CP	-10 -10		0 0		ns		
t _w (H)	CP Pulse Width HIGH	16		16		ns	Fig. 3-8	
t _w (L)	MR Pulse Width LOW	12		12		ns	Fig. 3-16	
trec	Recovery Time, MR to CP	25		20		ns		