54ACT112

54ACT112 Dual JK Negative Edge-Triggered Flip-Flop

Literature Number: SNOS434A

54ACT112

OBSOLETE

July 20, 2009

Dual JK Negative Edge-Triggered Flip-Flop

General Description

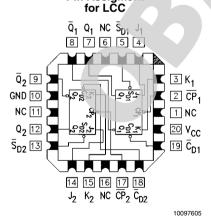
The 'ACT112 contains two independent, high-speed JK flipflops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on \overline{S}_D or \overline{C}_D prevents clocking and forces Q or \overline{Q} HIGH, respectively. Simultaneous LOW signals on \overline{S}_D and \overline{C}_D force both Q and \overline{Q} HIGH.

Asynchronous Inputs:

LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Features

- 'ACT112 has TTL-compatible inputs
- Outputs source/sink 24 mA
- Standard Microcircuit Drawing (SMD) 5962-8995001

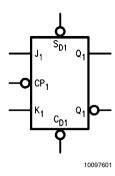

Connection Diagrams

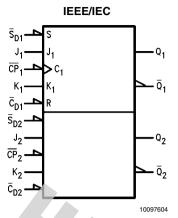
Q₂ GND

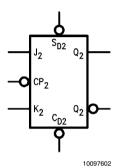
DIP and Flatpack $\overline{CP}_1 \xrightarrow{1} \xrightarrow{1} \xrightarrow{CP_1} \xrightarrow{K_1} \xrightarrow{15} \overline{C}$ $\overline{CP}_1 \xrightarrow{2} \xrightarrow{J_1} \xrightarrow{CP_1} \xrightarrow{K_1} \xrightarrow{14} \overline{C}$ $\overline{S}_{D1} \xrightarrow{5} \xrightarrow{Q_1} \xrightarrow{Q_1} \xrightarrow{Q_1} \xrightarrow{Q_1} \xrightarrow{Q_2} \xrightarrow{Q_2} \xrightarrow{Q_2} \xrightarrow{Q_2} \xrightarrow{Q_1} \xrightarrow{Q_2} \xrightarrow$

Pin Assigment for

1009760

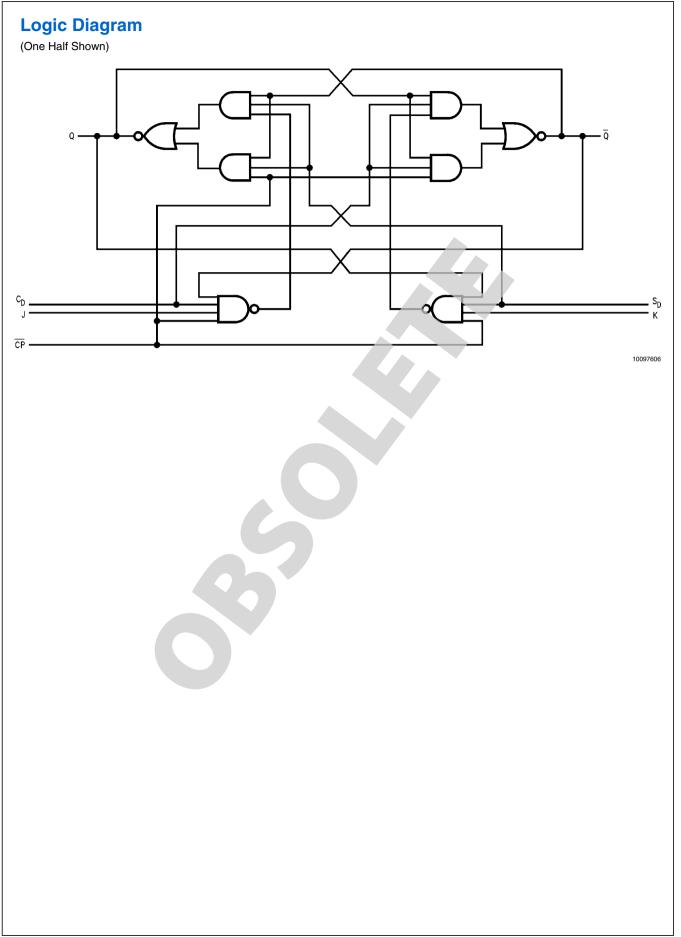

Pin Assigment


Pin Descriptions


Pin Names	Description			
J_1, J_2, K_1, K_2	Data Inputs			
$\overline{CP}_1, \overline{CP}_2$	Clock Pulse Inputs			
	(Active Falling Edge)			
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)			
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)			
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs			

FACT™ is a trademark of Fairchild Semiconductor

Logic Symbols


Truth Table

Inputs					Out	puts
\overline{S}_D	\overline{C}_{D}	CP	J	K	Q	Q
L	Н	X	Χ	Χ	Н	L
Н	L	X	Χ	Χ	L	Н
L	L	X	X	Χ	Н	Н
H	Н	М	h	h	\overline{Q}_0	Q_0
Н	H	М	I	h	L	Н
Н	H	М	h	I	Н	L
Н	Н	М	I	ı	Q_0	\overline{Q}_0

H (h) = HIGH Voltage Level L (l) = LOW Voltage Level

X = Immaterial

 $\begin{array}{lll} A = \text{HIRHaddenial} \\ M = \text{HIGH-to-LOW Clock Transition} \\ Q_0 \left(\overline{Q}_0 \right) = \text{Before HIGH-to-LOW Transition of Clock} \\ \text{Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.} \end{array}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

DC Output Diode Current (I_{OK})

 $\begin{aligned} \text{V}_{\text{O}} &= -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{O}} &= \text{V}_{\text{CC}} + \text{O}.5 & +20 \text{ mA} \\ \text{DC Output Voltage (V}_{\text{O}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{aligned}$

DC Output Source

or Sink Current (I_O) ±50 mA

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ± 50 mA Storage Temperature (T_{STG}) -65° C to $+150^{\circ}$ C

Junction Temperature (T_J)

CDIP 175°C

Recommended Operating Conditions

Supply Voltage (V_{CC}) 4.5V to 5.5V Input Voltage (V_I) 0V to V_{CC} Output Voltage (V_O) 0V to V_{CC} Operating Temperature (V_A) -55°C to +125°C Minimum Input Edge Rate ($\Delta V/\Delta t$) 125 mV/ns

V_{IN} from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Characteristics for 'ACT Family Devices

Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units	Conditions
		(V)	Guaranteed Limits	1	
V _{IH}	Minimum High Level	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V
V _{IL}	Maximum Low Level	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	0.8		or V _{CC} – 0.1V
V _{OH}	Minimum High Level	4.5	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.4		
					$V_{IN} = V_{IL}$ or V_{IH}
		4.5	3.70	V	I _{OH} = -24 mA
		5.5	4.70		$I_{OH} = -24 \text{ mA}$
					(Note 2)
V _{OL}	Maximum Low Level	4.5	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.1		
					$V_{IN} = V_{IL}$ or V_{IH}
		4.5	0.5	V	I _{OL} = 24 MA
		5.5	0.5		I _{OL} = 24 mA
					(Note 2)
I _{IN}	Maximum Input Leakage Current	5.5	± 1.0	μA	$V_I = V_{CC}$, GND
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_I = V_{CC} - 2.1V$
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current(Note 3)	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	80.0	μA	V _{IN} = V _{CC} or GND

 $\textbf{Note 2:} \ \textbf{All outputs loaded; thresholds on input associated with output under test.}$

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

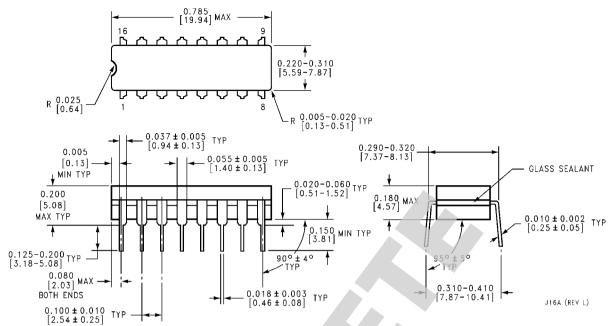
AC Electrical Characteristics for 'ACT Family Devices

Symbol	Parameter	V _{cc} (V)		C to +125°C = 50 pF	Units	Fig. No.
		(Note 4)	Min	Max		
f _{max}	Maximum Clock	5.0	80		MHz	
	Frequency					
t _{PLH}	Propagation Delay	5.0	1.0	14.0	ns	
	CP_n to Q_n or \overline{Q}_n					
t _{PHL}	Propagation Delay	5.0	1.0	14.0	ns	
	CP_n to Q_n or \overline{Q}_n					
t _{PLH}	Propagation Delay	5.0	1.0	13.5	ns	
	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n					
t _{PHL}	Propagation Delay	5.0	1.0	13.5	ns	
	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n				l i	

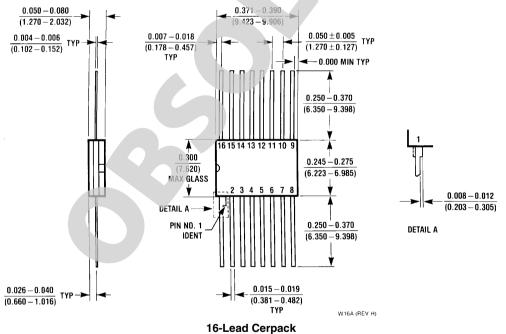
Note 4: Voltage Range 5.0 is 5.0V ±0.5V

AC Operating Requirements:

Symbol	Parameter	V _{cc} (V) (Note 5)	$T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C}$ $C_L = 50 \text{ pF}$ Guaranteed Minimum	Units	Fig. No.
t _S	Setup Time, HIGH or LOW J_n or \overline{K}_n to CP_n	5.0	8.0	ns	
t _H	Hold Time, HIGH or LOW J_n or \overline{K}_n to CP_n	5.0	1.5	ns	
t _W	Pulse Width CP_n or \overline{C}_{Dn} or \overline{S}_{Dn}	5.0	5.0	ns	
t _{rec}	Recovery Time \overline{C}_{Dn} or \overline{S}_{Dn} to CP_n	5.0	3.0	ns	

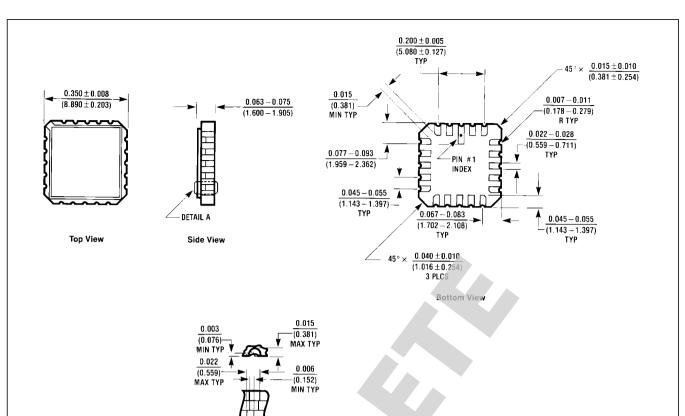

Note 5: Voltage Range 5.0 is 5.0V ±0.5V

Capacitance


Symbol	Parameter	Max	Units	Conditions
C _{IN}	Input Capacitance	10.0	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	60	pF	V _{CC} = 5.0V

www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted



16-Lead Ceramic Dual-in-line Package Number J16A

Package Number W16A

www.national.com 6

20-Lead Ceramic Leadless Chip Carrier Package Number E20A

Detail A

E20A (REVID:

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications
----------	--------------

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated