September 1998

54ACTQ16541 16-Bit Buffer/Line Driver with TRI-STATE Outputs

National Semiconductor

54ACTQ16541 16-Bit Buffer/Line Driver with TRI-STATE Outputs

General Description

The 'ACTQ16541 contains sixteen non-inverting buffers with TRI-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/ receiver. The device is byte controlled. Each byte has separate TRI-STATE control inputs which can be shorted together for full 16-bit operation.

The 'ACTQ16541 utilizes NSC Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO[™] output control for superior performance.

Logic Symbol

Pin Description

Pin Names	Description
ŌĒn	Output Enable Input (Active Low)
I ₀ -I ₁₅ O ₀ -O ₁₅	Inputs
0 ₀ -0 ₁₅	Outputs

dynamic threshold performance

■ 16-bit version of the 'ACTQ541

Outputs source/sink 24 mA

Separate control logic for each byte

Features

Connection Diagram

Utilizes NSC FACT Quiet Series technologyGuaranteed simultaneous switching noise level and

Pin Assignment for CERPAK

	1	\bigcirc	48	
°° –	2		47	- 'o ²
0 ₁ —	3		46	- ų
GND -	4		45	- GND
0 ₂ —	5		44	-1 ₂
0 ₃ —	6		43	- I ₃
v _{cc} –	7		42	— v _{cc}
0 ₄ —	8		41	- I ₄
0 ₅ —	9		40	— I ₅
GND -	10		39	- GND
° ₆ —	11		38	— I ₆
0 ₇ —	12		37	- I ₇
0 ₈ —	13		36	- 1 ₈
0 ₉ —	14		35	— I ₉
GND —	15		34	— GND
0 ₁₀ —	16		33	- 1 ₁₀
0 ₁₁ —	17		32	— l _{1 1}
v _{cc} –	18		31	– v _{cc}
0 ₁₂ —	19		30	— I ₁₂
0 ₁₃ —	20		29	— I _{1 3}
GND —	21		28	— GND
0 ₁₄ —	22		27	— I ₁₄
0 ₁₅ —	23		26	- 4 ₁₅
0E4 -	24		25	- OE3
			DS	010936-2

GTOTM is a trademark of National Semiconductor Corporation. TRI-STATE[®] is a registered trademark of National Semiconductor Corporation. FACTTM and FACT Quiet SemicsTM are trademarks of Fairchild Semiconductor Corporation.

© 1998 National Semiconductor Corporation DS010936

www.national.com

Functional Description

•

The 'ACTQ16541 contains sixteen non-inverting buffers with TRI-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The TRI-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each byte. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When \overline{OE}_n is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Truth Tables

	Inputs		Outputs
OE ₁	0E ₂	1 ₀ -1 ₇	0 ₀ -0 ₇
L	L	Н	Н
Н	х	х	Z
Х	н	х	Z
L	L	L	L
	Inputs		Outputs
OE ₃	OE ₄	I ₈ –I ₁₅	0 ₈ -0 ₁₅
L	L	н	н
н	х	х	Z
Х	Н	х	Z
L	L	L	L

H = High Voltage Level L = Low Voltage Level X = Immaterial

Z = High Impedance

Logic Diagram

www.national.com

Absolute Maximum Ratings (Note 1)

per Output Pin Junction Temperature

Storage Temperature

CDIP

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and

Recommended	Operating
Conditions	

4.5V to 5.5V

-55°C to +125°C

0V to $V_{\rm CC}$

0V to $V_{\rm CC}$

125 mV/ns

Distributors for availability and spe	Supply Voltage (V _{CC})		
Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V	'ACTQ Input Voltage (V _I)	
$V_{\rm I} = -0.5V$	–20 mA	Output Voltage (V _O) Operating Temperature (T _A):	
$V_{I} = V_{CC} + 0.5V$ DC Output Diode Current (I _{OK})	+20 mA	54ACTQ	
$V_{\rm O} = -0.5V$	–20 mA	Minimum Input Edge Rate (dV/dt) 'ACTQ Devices	
$V_{O} = V_{CC} + 0.5V$ DC Output Voltage (V _O)	+20 mA -0.5V to V _{CC} + 0.5V	V _{IN} from 0.8V to 2.0V	
DC Output Voltage (V ₀) DC Output Source/Sink Current (I ₀)	±50 mA	V _{CC} 4.5V, 5.5V Note 1: Absolute maximum ratings are thos	
DC V _{CC} or Ground Current per Output Pin	±50 mA	to the device may occur. The databook speci exception to ensure that the system design i temperature, and output/input loading varia	

ose values beyond which damage acifications should be met, without n is reliable over its power supply, iables. National does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for 'ACTQ Family Devices

+175°C -65°C to +150°C

Symbol	Parameter	V _{CC} 54ACTQ		Units	Conditions
		(V)	T _A = -55°C		
			to +125°C		
			Guaranteed Limits	_	
V _{IH}	Minimum High	4.5	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	2.0		or V _{CC} – 0.1V
V _{IL}	Maximum Low	4.5	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	0.8		or V _{CC} – 0.1V
V _{он}	Minimum High	4.5	4.4	V	I _{OUT} = –50 μA
	Output Voltage	5.5	5.4		
					(Note 2)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	3.70	V	I _{OH} = -24 mA
		5.5	4.70		I _{OH} = -24 mA
V _{OL}	Maximum Low	4.5	0.1	V	Ι _{ΟUT} = 50 μΑ
	Output Voltage	5.5	0.1		
					(Note 2)
					$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	0.50	V	I _{OL} = 24 mA
		5.5	0.50		I _{OL} = 24 mA
l _{oz}	Maximum TRI-STATE	5.5	±10.0	μΑ	$V_{I} = V_{IL}, V_{IH}$
	Leakage Current				$V_{O} = V_{CC}, GND$
I _{IN}	Maximum Input	5.5	±1.0	μA	$V_{I} = V_{CC}, GND$
	Leakage Current				
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_{I} = V_{CC} - 2.1V$
I _{cc}	Max Quiescent	5.5	160.0	μA	$V_{IN} = V_{CC}$ or GND
	Supply Current				
I _{OLD}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)		-50	mA	V _{OHD} = 3.85V Min

www.national.com

Symbol	Parameter	V _{cc}	$\begin{array}{c} V_{CC} & 54ACTQ \\ (V) & T_A = -55^{\circ}C \end{array}$		Conditions
		(V)			
			to +125°C		
			Guaranteed Limits		
V _{OLP}	Quiet Output	5.0	1.2	V	
	Maximum Dynamic				(Note 4)
	V _{OL}				
VOLV	Quiet Output	5.0	-1.2	V	
	Minimum Dynamic				(Note 4)
	V _{OL}				

Note 2: All outputs loaded; thresholds associated with output under test.

Note 3: Maximum test duration 2.0 ms; one output loaded at a time.

Note 4: Maximum number of outputs that can switch simultaneously is n. (n - 1) outputs are switched HIGH and one output held HIGH.

AC Electrical Characteristics

Symbol Parameter		V _{cc} (V) (Note 5)	54A T -55°C t	Units	
			$C_L = 50 \text{ pF}$		
			Min	Max	
t _{PLH} ,	Propagation Delay	5.0	3.0	10.3	ns
t _{PHL}	Data to Output		3.0	10.0	
t _{PZH} ,	Output Enable Time	5.0	3.0	10.5	ns
t _{PZL}			3.0	11.5	
t _{PHZ} ,	Output Disable Time	5.0	3.0	11.0	ns
t _{PLZ}			3.0	11.0	

Note 5: Voltage Range 5.0 is $5.0V \pm 0.5V$.

Capacitance

. .

Symbol	Parameter	Max	Units	Conditions
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation	100	pF	$V_{CC} = 5.0V$
	Capacitance			

