54F283,74F283

54F283 4-Bit Binary Full Adder with Fast Carry

Literature Number: SNOS184A

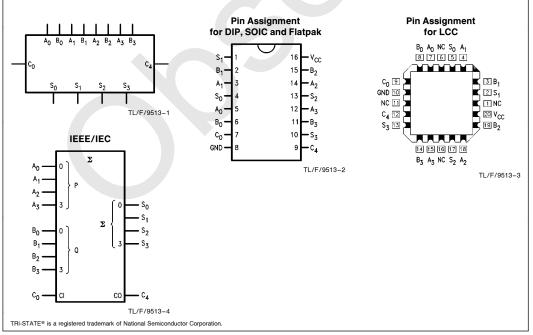
54F/74F283 4-Bit Binary Full Adder with Fast Carry

General Description

Features

The 'F283 high-speed 4-bit binary full adder with internal carry lookahead accepts two 4-bit binary words $(A_0-A_3,\,B_0-B_3)$ and a Carry input $(C_0).$ It generates the binary Sum outputs (S_0-S_3) and the Carry output (C_4) from the most significant bit. The 'F283 will operate with either active HIGH or active LOW operands (positive or negative logic).

■ Guaranteed 4000V minimum ESD protection


Commercial	Military	Package Number	Package Description		
74F283PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line		
	54F283DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line		
74F283SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC		
74F283SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ		
	54F283FM (Note 2)	W16A	16-Lead Cerpack		
	54F283LL (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out

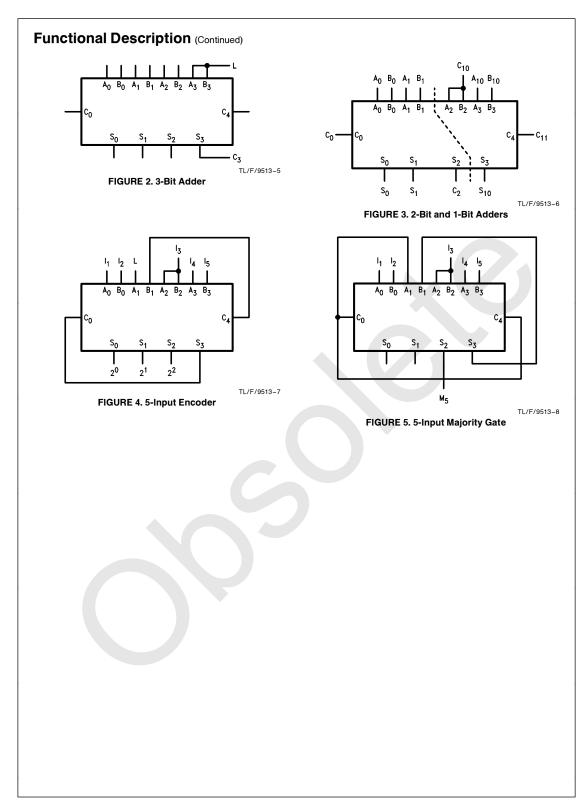
		54F/74F					
Pin Names	Pin Names Description		Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}				
A ₀ -A ₃	A Operand Inputs	1.0/2.0	20 μA/ – 1.2 mA				
B ₀ -B ₃	B Operand Inputs	1.0/2.0	20 μA/ – 1.2 mA				
C ₀	Carry Input	1.0/1.0	20 μA/ – 0.6 mA				
S ₀ -S ₃	Sum Outputs	50/33.3	-1 mA/20 mA				
C ₄	Carry Output	50/33.3	-1 mA/20 mA				

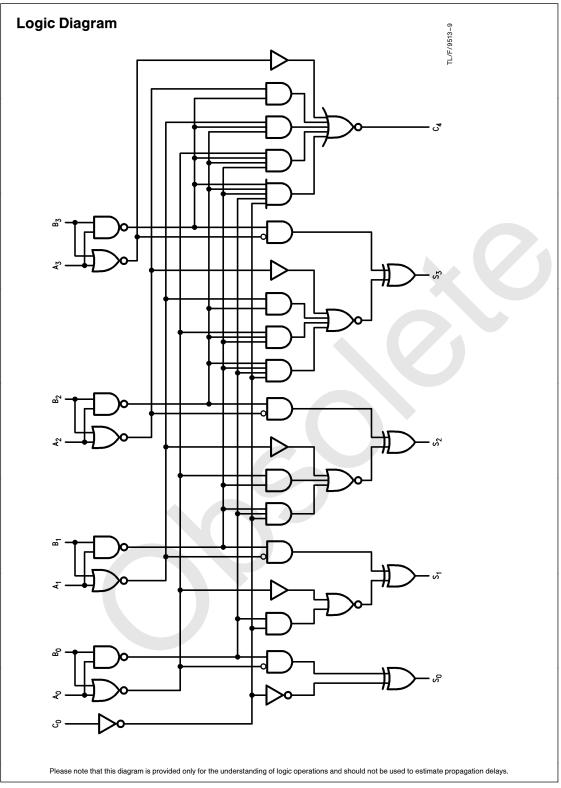
Functional Description

The 'F283 adds two 4-bit binary words (A plus B) plus the incoming Carry (C_0). The binary sum appears on the Sum (S_0 – S_3) and outgoing carry (C_4) outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

$$\begin{array}{c} 2^0 \left(\mathsf{A}_0 + \mathsf{B}_0 + \mathsf{C}_0 \right) + 2^1 \left(\mathsf{A}_1 + \mathsf{B}_1 \right) \\ + 2^2 \left(\mathsf{A}_2 + \mathsf{B}_2 \right) + 2^3 \left(\mathsf{A}_3 + \mathsf{B}_3 \right) \\ = \mathsf{S}_0 + 2\mathsf{S}_1 + 4\mathsf{S}_2 + 8\mathsf{S}_3 + 16\mathsf{C}_4 \\ \text{Where (+)} = \mathsf{plus} \end{array}$$

Interchanging inputs of equal weight does not affect the operation. Thus $C_0,\,A_0,\,B_0$ can be arbitrarily assigned to pins 5, 6 and 7 for DIPS, and 7, 8 and 9 for chip carrier packages. Due to the symmetry of the binary add function, the 'F283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). See Figure~1. Note that if C_0 is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic.


Due to pin limitations, the intermediate carries of the 'F283 are not brought out for use as inputs or outputs. However,


other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure 2 shows how to make a 3-bit adder. Tying the operand inputs of the fourth adder (A3, B3) LOW makes S_3 dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure $\it 3$ shows a way of dividing the 'F283 into a 2-bit and a 1-bit adder. The third stage adder (A_2 , B_2 , S_2) is used merely as a means of getting a carry (C10) signal into the fourth stage (via A2 and B2) and bringing out the carry from the second stage on S2. Note that as long as A2 and B2 are the same, whether HIGH or LOW, they do not influence S2. Similarly, when A2 and B2 are the same the carry into the third stage does not influence the carry out of the third stage. Figure 4 shows a method of implementing a 5-input encoder, where the inputs are equally weighted. The outputs S₀, S₁ and S₂ present a binary number equal to the number of inputs I_1-I_5 that are true. Figure 5 shows one method of implementing a 5-input majority gate. When three or more of the inputs I1-I5 are true, the output M_5 is true.

	C ₀	A ₀	A ₁	A ₂	A ₃	B ₀	B ₁	B ₂	В3	S ₀	S ₁	S ₂	S ₃	C ₄
Logic Levels	L	L	Н	L	Н	Н	L	L	Н	Н	Н	L	L	Н
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Active HIGH: 0 + 10 + 9 = 3 + 16 Active LOW: 1 + 5 + 6 = 12 + 0

FIGURE 1. Active HIGH versus Active LOW Interpretation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \text{Storage Temperature} & -65^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \text{Ambient Temperature under Bias} & -55^{\circ}\text{C to} + 125^{\circ}\text{C} \\ \text{Junction Temperature under Bias} & -55^{\circ}\text{C to} + 175^{\circ}\text{C} \\ \text{Plastic} & -55^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{CC} \\ \text{TRI-STATE} \tiny{\textcircled{\$}} \text{ Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

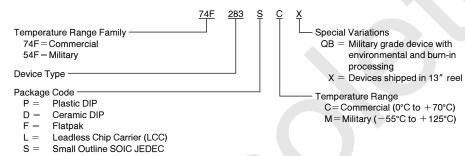
Free Air Ambient Temperature

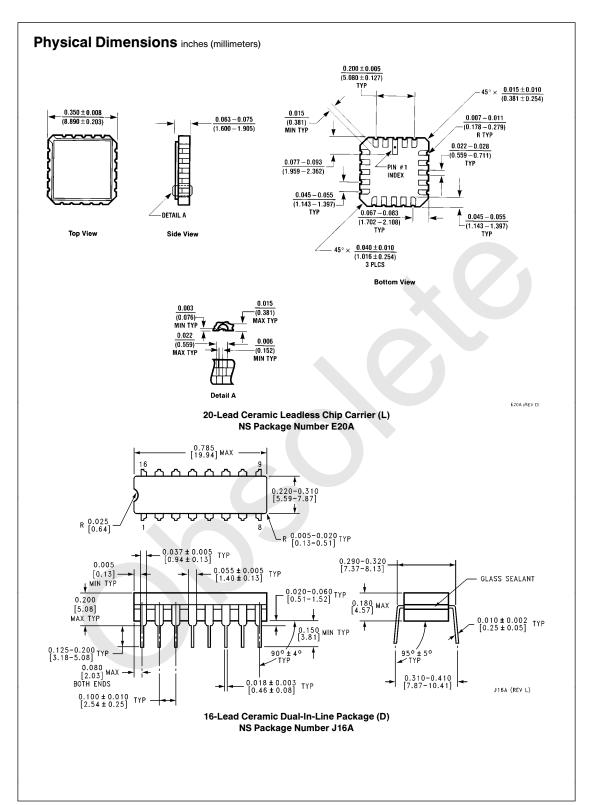
Supply Voltage

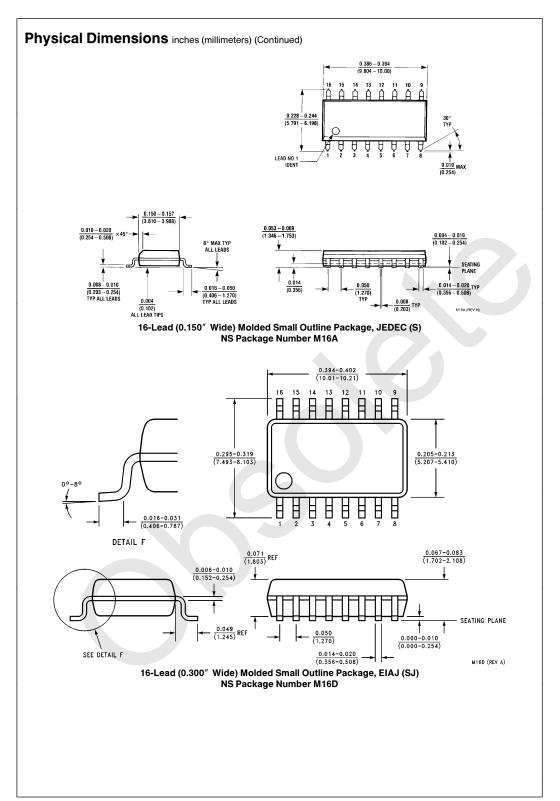
Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

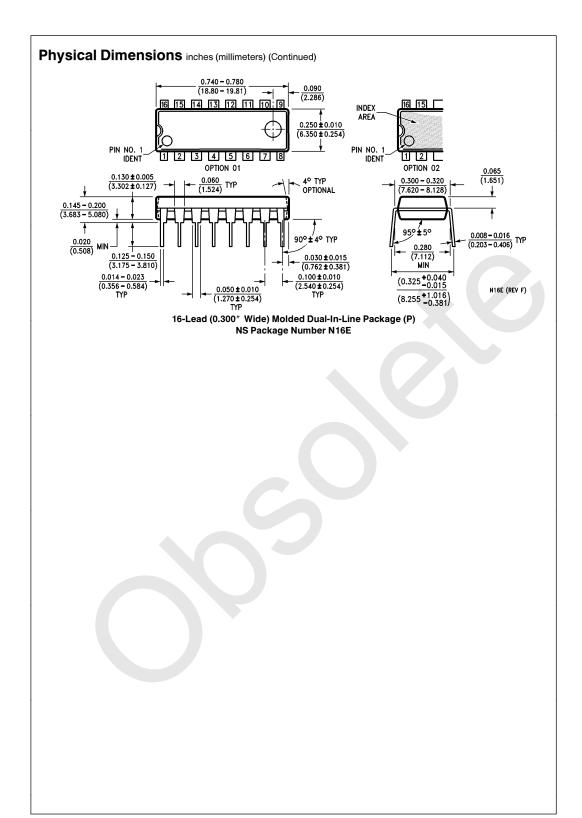
DC Electrical Characteristics

Symbol	Parameter -		54F/74F			Units	V	Conditions	
Syllibol			Min	Тур	Max	Units	V _{CC}	Conditions	
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V_{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{\text{IN}} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}		7	0.5 0.5	٧	Min	I _{OL} = 20 mA I _{OL} = 20 mA	
I _{IH}	Input HIGH Current	54F 74F	1		20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V_{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				−0.6 −1.2	mA	Max	$V_{IN} = 0.5V (C_O)$ $V_{IN} = 0.5V (A_n, B_n)$	
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Curren	t		36	55	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Curren	t		36	55	mA	Max	V _O = LOW	

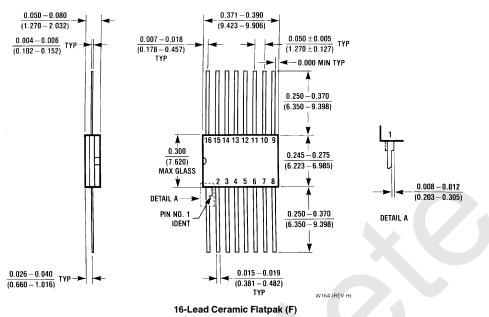

AC Electrical Characteristics


Symbol	Symbol Parameter		$74F$ $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			4F _C = Mil 50 pF	74F T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation Delay C ₀ to S _n	3.5 3.0	7.0 7.0	9.5 9.5	3.5 3.0	14.0 14.0	3.5 3.0	11.0 11.0	ns
t _{PLH}	Propagation Delay A _n or B _n to S _n	3.0 3.0	7.0 7.0	9.5 9.5	3.0 3.0	17.0 14.0	3.0 3.0	13.0 11.5	ns
t _{PLH}	Propagation Delay C ₀ to C ₄	3.0 3.0	5.7 5.4	7.5 7.0	3.0 2.5	10.5 10.0	3.0 3.0	8.5 8.0	ns
t _{PLH} t _{PHL}	Propagation Delay A _n or B _n to C ₄	3.0 2.5	5.7 5.3	7.5 7.0	3.0 2.5	10.5 10.0	3.0 2.5	8.5 8.0	ns


Ordering Information


SJ = Small Outline SOIC EIAJ

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:



Physical Dimensions inches (millimeters) (Continued)

NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications
----------	--------------

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors <u>www.ti.com/omap</u>

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated