54F646,54F648,74F646,74F646B,74F648 54F646 54F648 74F646 74F646B 74F648 Octal Transceiver/Register with TRI-STATE(RM) Outputs Literature Number: SNOS210A # 54F/74F646 • 74F646B • 54F/74F648 Octal Transceiver/Register with TRI-STATE® Outputs ## **General Description** These devices consist of bus transceiver circuits with TRI-STATE, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a high logic level. Control $\overline{\mathbf{G}}$ and direction pins are provided to control the transceiver function. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when the enable control $\overline{\mathbf{G}}$ is Active LOW. In the isolation mode (control $\overline{\mathbf{G}}$ HIGH), A data may be stored in the B register and/or B data may be stored in the A register. ### **Features** - Independent registers for A and B buses - Multiplexed real-time and stored data - 'F648 has inverting data paths - 'F646/'F646B have non-inverting data paths - 'F646B is a faster version of the 'F646 - TRI-STATE outputs - 300 mil slim DIP - Guaranteed 4000V minimum ESD protection | Commercial | Military | Package
Number | Package Description | |--------------------|--------------------|-------------------|--| | 74F646SPC | | N24C | 24-Lead (0.300" Wide) Molded Dual-In-Line | | | 54F646DM (Note 2) | J24F | 24-Lead (0.300" Wide) Ceramic Dual-In-Line | | 74F646SC (Note 1) | | M24B | 24-Lead (0.300" Wide) Molded Small Outline, JEDEC | | 74F646MSA (Note 1) | | MSA24 | 24-Lead Molded Shrink Small Outline, EIAJ, Type II | | | 54F646FM (Note 2) | W24C | 24-Lead Cerpack | | | 54F646LM (Note 2) | E28A | 28-Lead Ceramic Leadless Chip Carrier, Type C | | 74F646BSPC | | N24C | 24-Lead (0.300" Wide) Molded Dual-In-Line | | 74F646BSC (Note 1) | | M24B | 24-Lead (0.300" Wide) Molded Small Outline, JEDEC | | 74F648SPC | | N24C | 24-Lead (0.300" Wide) Molded Dual-In-Line | | | 54F648SDM (Note 2) | J24F | 24-Lead (0.300" Wide) Ceramic Dual-In-Line | | 74F648SC (Note 1) | | M24B | 24-Lead (0.300" Wide) Molded Small Outline, JEDEC | | | 54F648FM (Note 2) | W24C | 24-Lead Cerpack | | | 54F648LM (Note 2) | E28A | 24-Lead Ceramic Leadless Chip Carrier, Type C | Note 1: Devices also available in 13" reel. Use suffix = SCX. Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB. #### **Logic Symbols** TL/F/9580-7 TRI-STATE® is a registered trademark of National Semiconductor Corporation # **Unit Loading/Fan Out** | • | | | | | | | | | |--------------------------------|-------------------------|----------------|---|--|--|--|--|--| | | | 54F/74F | | | | | | | | Pin Names | Pin Names Description | | Input I _{IH} /I _{IL}
Output I _{OH} /I _{OL} | | | | | | | A ₀ -A ₇ | Data Register A Inputs/ | 3.5/1.083 | 70 μΑ/ – 650 μΑ | | | | | | | | TRI-STATE Outputs | 600/106.6 (80) | -12 mA/64 mA (48 mA) | | | | | | | B ₀ -B ₇ | Data Register B Inputs/ | 3.5/1.083 | 70 μΑ/ -650 μΑ | | | | | | | | TRI-STATE Outputs | 600/106.6 (80) | -12 mA/64 mA (48 mA) | | | | | | | CPAB, CPBA | Clock Pulse Inputs | 1.0/1.0 | 20 μA/ - 0.6 mA | | | | | | | SAB, SBA | Select Inputs | 1.0/1.0 | $20~\mu\text{A}/-0.6~\text{mA}$ | | | | | | | G | Output Enable Input | 1.0/1.0 | 20 μA/ -0.6 mA | | | | | | | DIR | Direction Control Input | 1.0/1.0 | 20 μA/ - 0.6 mA | | | | | | #### **Function Table** | | | Ir | puts | | | Data I/O* | | Function | | | | |-------------|-------------|---|---|------------------|-------------|--------------------------------|--------------------------------|--|--|--|--| | G | DIR | СРАВ | СРВА | SAB | SBA | A ₀ -A ₇ | B ₀ -B ₇ | T unction | | | | | H
H
H | X
X
X | H or L
X | H or L
X | X
X
X | X
X
X | Input | Input | Isolation
Clock A _n Data into A Register
Clock B _n Data into B Register | | | | | L
L
L | H
H
H | X
———————————————————————————————————— | X
X
X | L
L
H
H | X
X
X | Input | Output | A _n to B _n —Real Time (Transparent Mode) Clock A _n Data into A Register A Register to B _n (Stored Mode) Clock A _n Data into A Register and Output to B _n | | | | | L
L
L | L
L
L | X
X
X | X
———————————————————————————————————— | X
X
X | L
L
H | Output | Input | B _n to A _n —Real Time (Transparent Mode) Clock B _n Data into B Register B Register to A _n (Stored Mode) Clock B _n Data into B Register and Output to A _n | | | | *The data output functions may be enabled or disabled by various signals at the G and DIR Inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock inputs. H = HIGH Voltage Level L = LOW Voltage Level X = Irrelevant ✓ = LOW-to-HIGH Transition # Logic Diagrams (Continued) 'F646/'F646B CBA SBA · CAB-SAB-1 OF 8 CHANNELS TO 7 OTHER CHANNELS TL/F/9580-5 Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. # Logic Diagrams (Continued) 'F648 CBA -SBA · CAB-SAB 1 OF 8 CHANNELS TO 7 OTHER CHANNELS Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. TL/F/9580-6 ### **Absolute Maximum Ratings** (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$ V_{CC} Pin Potential to Voltage Applied to Output in HIGH State (with V_{CC} = 0V) $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$ Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V **Note 1:** Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs. # Recommended Operating Conditions Free Air Ambient Temperature Military -55°C to $+125^{\circ}\text{C}$ Commercial 0°C to $+70^{\circ}\text{C}$ Supply Voltage Military +4.5V to +5.5V Commercial +4.5V to +5.5V ## **DC Electrical Characteristics** | Symbol | Parame | tor | | 54F/74F | | Units | V _{CC} | Conditions | | |------------------------------------|---------------------------------------|--|------------|---------|--------------|--------|--------------------------|--|--| | Syllibol | Parame | lei | Min | Тур | Max | Ullits | VCC | | | | V _{IH} | Input HIGH Voltage | | 2.0 | | | V | | Recognized as a HIGH Signal | | | V _{IL} | Input LOW Voltage | | | | 0.8 | V | | Recognized as a LOW Signal | | | V _{CD} | Input Clamp Diode Vo | oltage | | | -1.2 | V | Min | $I_{IN} = -18 \text{ mA (Non I/O Pins)}$ | | | V _{OH} | Output HIGH
Voltage | 54F 10% V _{CC}
74F 10% V _{CC} | 2.0
2.0 | | | V | Min | $I_{OH} = -12 \text{ mA } (A_n, B_n)$
$I_{OH} = -15 \text{ mA } (A_n, B_n)$ | | | V _{OL} | Output LOW
Voltage | 54F 10% V _{CC}
74F 10% V _{CC} | | | 0.55
0.55 | V | Min | $I_{OL} = 48 \text{ mA } (A_n, B_n)$
$I_{OL} = 64 \text{ mA } (A_n, B_n)$ | | | I _{IH} | Input HIGH
Current | 54F
74F | | | 20.0
5.0 | μΑ | Max | V _{IN} = 2.7V (Non I/O Pins) | | | I _{BVI} | Input HIGH Current
Breakdown Test | 54F
74F | | | 100
7.0 | μΑ | Max | V _{IN} = 7.0V (Non I/O Pins) | | | I _{BVIT} | Input HIGH Current
Breakdown (I/O) | 54F
74F | | | 1.0
0.5 | mA | Max | $V_{\rm IN}=5.5V(A_{\rm n},B_{\rm n})$ | | | I _{CEX} | Output HIGH
Leakage Current | 54F
74F | | | 250
50 | μΑ | Max | $V_{OUT} = V_{CC}$ | | | V _{ID} | Input Leakage
Test | 74F | 4.75 | | | ٧ | 0.0 | $I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded | | | I _{OD} | Output Leakage
Circuit Current | 74F | | | 3.75 | μΑ | 0.0 | V _{IOD} = 150 mV
All Other Pins Grounded | | | I _{IL} | Input LOW Current | | | | -0.6 | mA | Max | V _{IN} = 0.5V (Non I/O Pins) | | | I _{IH} + I _{OZH} | Output Leakage Curre | ent | | | 70 | μΑ | Max | $V_{OUT} = 2.7V (A_n, B_n)$ | | | $I_{IL} + I_{OZL}$ | Output Leakage Curre | ent | | | -650 | μΑ | Max | $V_{OUT} = 0.5V (A_n, B_n)$ | | | los | Output Short-Circuit C | -100 | | -225 | mA | Max | V _{OUT} = 0V | | | | I _{ZZ} | Bus Drainage Test | | | 500 | μΑ | 0.0V | V _{OUT} = 5.25V | | | | Icch | Power Supply Current | | | 135 | mA | Max | V _O = HIGH | | | | ICCL | Power Supply Current | t | | | 150 | mA | Max | $V_O = LOW$ | | | I _{CCZ} | Power Supply Current | t | | | 150 | mA | Max | V _O = HIGH Z | | 'F646/'F648 # **AC Electrical Characteristics** | | | $74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 \text{ pF}$ | | 5 | 4F | 7 | | | |------------------|-------------------------------|--|-------------|--|--------------|--|-------------|-------| | Symbol | Parameter | | | T _A , V _{CC} = Mil
C _L = 50 pF | | T _A , V _{CC} = Com
C _L = 50 pF | | Units | | | | Min | Max | Min | Max | Min | Max | | | f _{max} | Maximum Clock Frequency | 90 | | 75 | | 90 | | MHz | | t _{PLH} | Propagation Delay | 2.0 | 7.0 | 2.0 | 8.5 | 2.0 | 8.0 | ns | | t _{PHL} | Clock to Bus | 2.0 | 8.0 | 2.0 | 9.5 | 2.0 | 9.0 | | | t _{PLH} | Propagation Delay | 1.0 | 7.0 | 1.0 | 8.0 | 1.0 | 7.5 | ns | | t _{PHL} | Bus to Bus ('F646) | 1.0 | 6.5 | 1.0 | 8.0 | 1.0 | 7.0 | | | t _{PLH} | Propagation Delay | 2.0 | 8.5 | 1.0 | 10.0 | 2.0 | 9.0 | ns | | t _{PHL} | Bus to Bus ('F648) | 1.0 | 7.5 | 1.0 | 9.0 | 1.0 | 8.0 | | | t _{PLH} | Propagation Delay | 2.0 | 8.5 | 2.0 | 11.0 | 2.0 | 9.5 | ns | | t _{PHL} | SBA or SAB to A or B | 2.0 | 8.0 | 2.0 | 10.0 | 2.0 | 9.0 | | | t _{PZH} | Enable Time | 2.0 | 8.5 | 2.0 | 10.0 | 2.0 | 9.0 | ns | | t _{PZL} | OE to A or B | 2.0 | 12.0 | 2.0 | 13.5 | 2.0 | 12.5 | | | t _{PHZ} | Disable Time | 1.0 | 7.5 | 1.0 | 9.0 | 1.0 | 8.5 | ns | | t _{PLZ} | OE to A or B | 2.0 | 9.0 | 2.0 | 11.0 | 2.0 | 9.5 | | | t _{PZH} | Enable Time | 2.0 | 14.0 | 2.0 | 16.0 | 2.0 | 15.0 | ns | | t _{PZL} | DIR to A or B | 2.0 | 13.0 | 2.0 | 15.0 | 2.0 | 14.0 | | | t _{PHZ} | Disable Time
DIR to A or B | 1.0
2.0 | 9.0
11.0 | 1.0
2.0 | 10.0
12.0 | 1.0
2.0 | 9.5
11.5 | ns | # 'F646/'F648 # **AC Operating Requirements** | | | 74F | | 54 | F | 74F | | | |--|---|---------------------------------------|-----|----------------------------------|---------|--|-----|-------| | Symbol | Parameter | $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ | | T _A , V _{CC} | ; = Mil | T _A , V _{CC} = Com | | Units | | | | Min | Max | Min | Max | Min | Max | | | t _S (H)
t _S (L) | Setup Time, HIGH or LOW
Bus to Clock | 5.0
5.0 | | 5.0
5.0 | | 5.0
5.0 | | ns | | t _h (H)
t _h (L) | Hold Time, HIGH or LOW
Bus to Clock | 2.0
2.0 | | 2.5
2.5 | | 2.0
2.0 | | ns | | t _w (H) | Clock Pulse Width
HIGH or LOW | 5.0
5.0 | | 5.0
5.0 | | 5.0
5.0 | | ns | ### 'F646B # **AC Electrical Characteristics** | | | 74F | | 5 | 4F | 7- | | | |--------------------------------------|---|-------------------|---------------------------|-----|-----------------------------|--|-------------|-------| | Symbol | Parameter | v _{cc} = | + 25°C
+ 5.0V
50 pF | | _C = Mil
50 pF | T _A , V _{CC} = Com
C _L = 50 pF | | Units | | | | Min | Max | Min | Max | Min | Max | | | f _{max} | Maximum Clock Frequency | 165 | | | | 150 | | MHz | | t _{PLH} | Propagation Delay
Clock to Bus | 2.5
3.0 | 7.0
7.5 | | | 2.5
3.0 | 8.0
8.0 | ns | | t _{PLH} | Propagation Delay
Bus to Bus | 2.0
2.0 | 6.0
6.0 | | | 2.0
2.0 | 7.0
7.0 | ns | | t _{PLH}
t _{PHL} | Propagation Delay
SBA or SAB to A or B | 2.5
2.5 | 7.5
7.5 | | | 2.5
2.5 | 8.5
8.5 | ns | | t _{PZH}
t _{PZL} | Enable Time
OE to A or B | 2.5
2.5 | 6.5
9.0 | | | 2.5
2.5 | 8.0
10.0 | ns | | t _{PHZ}
t _{PLZ} | Disable Time
OE to A or B | 1.5
2.0 | 6.5
7.0 | | | 1.5
2.0 | 7.5
8.5 | ns | | t _{PZH}
t _{PZL} | Enable Time
DIR to A or B | 2.0
3.0 | 7.0
9.5 | | | 2.0
3.0 | 8.5
10.0 | ns | | t _{PHZ}
t _{PLZ} | Disable Time
DIR to A or B | 1.5
2.5 | 7.5
8.5 | | | 1.5
2.5 | 8.5
9.5 | ns | # 'F646B # **AC Operating Requirements** | | | | 74F | | F | 74F | | | |--|---|---------------------------------------|-----|----------------------------------|---------|--|-----|-------| | Symbol | Parameter | $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ | | T _A , V _{CC} | ; = Mil | T _A , V _{CC} = Com | | Units | | | | Min | Max | Min | Max | Min | Max | | | t _S (H) | Setup Time, HIGH or LOW
Bus to Clock | 5.0
5.0 | | | | 4.0
4.0 | | ns | | t _h (H)
t _h (L) | Hold Time, HIGH or LOW
Bus to Clock | 1.5
1.5 | | | | 1.5
1.5 | | ns | | t _w (H) | Clock Pulse Width
HIGH or LOW | 5.0
5.0 | | | | 5.0
5.0 | | ns | # **Ordering Information** The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows: 28-Lead Ceramic Leadless Chip Carrier, Type C NS Package Number E28A 24-Lead (0.300" Wide) Ceramic Dual-In-Line Package (SD) NS Package Number J24F # Physical Dimensions inches (millimeters) (Continued) 24-Lead Cerpack NS Package Number W24C #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | Applications | |----------|--------------| |----------|--------------| Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID <u>www.ti-rfid.com</u> OMAP Mobile Processors <u>www.ti.com/omap</u> Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated