October 1999

54FCT138 1-of-8 Decoder/Demultiplexer

National Semiconductor

54FCT138 1-of-8 Decoder/Demultiplexer

General Description

The FCT138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three FCT138 devices or a 1-of-32 decoder using four FCT138 devices and one inverter.

Features

- Demultiplexing capability
- Multiple input enable for easy expansion
- Active LOW mutually exclusive outputs
- Outputs sink capability of 32mA, source capability of 12mA
- TTL input and output level compatible
- CMOS power consumption
- Standard Microcircuit Drawing (SMD) 5962-8765401

Ordering Code

Military	Package Package Description Number				
54FCT138DMQB	J16A	16-Lead Ceramic Dual-In-Line			
54FCT138FMQB	W16A	16-Lead Cerpack			
54FCT138LMQB	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			

Logic Symbols

Connection Diagrams

FACT® is a registered trademark of Fairchild Semiconductor Corporation.

Outputs

Enable Inputs

Enable Input

 $\overline{E}_1 - \overline{E}_2$

 $\overline{O}_0 - \overline{O}_7$

E₃

© 1999 National Semiconductor Corporation DS100963

www.national.com

Functional Description

The FCT138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A_0, A_1, A_2) and, when enabled, provides eight mutually exclusive active-LOW outputs $(\overline{O}_0 - \overline{O}_7)$. The FCT138 features three Enable inputs, two active-LOW (\overline{E}_1 , \overline{E}_2) and one active-HIGH (\overline{E}_3). All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and \overline{E}_3 is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four FCT138 devices and one inverter (see Figure 1). The FCT138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active-HIGH or active- $\dot{\text{LOW}}$ state.

	Inputs						Outputs						
Ē	Ē ₂	E ₃	Ao	A ₁	A ₂	Ōo	\overline{O}_1	\overline{O}_2	\overline{O}_3	\overline{O}_4	\overline{O}_5	\overline{O}_6	07
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	н	Х	Х	X	X	н	Н	н	н	н	н	н	н
X	Х	L	Х	X	X	н	Н	н	н	н	н	н	н
L	L	н	L	L	L	L	Н	н	н	н	н	н	н
L	L	н	н	L	L	н	L	н	н	н	н	н	н
L	L	н	L	н	L	н	н	L	н	н	н	н	н
L	L	н	н	н	L	н	н	н	L	н	н	н	н
L	L	н	L	L	н	н	н	н	н	L	н	н	н
L	L	н	н	L	н	н	н	н	н	н	L	н	н
L	L	н	L	н	н	н	н	н	н	н	н	L	н
L	L	н	н	н	н	н	н	н	н	н	н	н	L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 1)	-0.5V to +7.0V
Input Current (Note 1)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to +5.5V
in the HIGH State	–0.5V to $V_{\rm CC}$
Current Applied to Output	

in LOW State (Max) DC Latchup Source Current Twice the rated I_{OL} (mA) -500~mA

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	-55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns
Note 1: Absolute maximum ratings are those vai to the device may occur. The databook specificat exception, to ensure that the system design is rel	ions should be met, without
temperature and output/input loading variables	1 11 22

temperature, and output/input loading variables. National does not recom mend operation of FACT® circuits outside databook specifications.

DC Characteristics for 'FCT Family Devices

Symbol	Parameter		FCT138		Units	V _{cc}	Conditions
		Min Max		1			
VIH	Input HIGH Voltage		2.0		V		Recognized HIGH Signal
VIL	Input LOW Voltage			0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	54FCT	4.3		V	Min	I _{OH} = -300 μA
		54FCT	2.4				I _{OH} = -12 mA
V _{OL}	Output LOW Voltage	54FCT		0.2	V	Min	I _{OL} = 300 μA
		54FCT		0.5			I _{OL} = 32 mA
IIH	Input HIGH Current			5	μA	Max	V _{IN} = V _{CC}
I _{IL}	Input LOW Current			-5	μΑ	Max	$V_{IN} = 0.0V$
Ios	Output Short-Circuit Current			-60	mA	Max	$V_{OUT} = 0.0V$
I _{CCQ}	Quiescent Power Supply Current			1.5	mA	Max	V_{IN} < 0.2V or V_{IN} 5.3V, V_{CC} = 5.5V
ΔI_{CC}	Quiescent Power Supply Current			2.0	mA	Max	$V_1 = 3.4V, V_{CC} = 5.5V$
I _{CCD}	Dynamic I _{CC}			0.4	mA/ MHz	Max	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
I _{CCT}	Total Power Supply Current			5.5	mA	Max	$\begin{array}{ c c c } \hline Outputs \ Open, \ f_{CP} = 10 \ MHz, \\ V_{CC} = 5.5V, \ V_{IN} \ 5.3V \ or \ V_{IN} < \\ 0.2V, \ One \ Bit \ Toggling, \ 50\% \\ \hline Duty \ Cycle, \ \overline{OE} = GND, \ LE = \\ V_{CC} \end{array}$

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

			541	-ст	_	Fig.
		V _{cc}	T _A =	–55°C		
Symbol	Parameter	(V)	to +125°C C _L = 50 pF		Units	No.
		(Note 4)				
			Min	Max		
t _{PLH}	Propagation Delay	5.0	1.0	12.0	ns	
	A_n to \overline{O}_n					
t _{PHL}	Propagation Delay	5.0	1.0	12.0	ns	
	A_n to \overline{O}_n					
t _{PLH}	Propagation Delay	5.0	1.0	12.5	ns	
	\overline{E}_1 or \overline{E}_2 to \overline{O}_n					
t _{PHL}	Propagation Delay	5.0	1.0	12.5	ns	
	\overline{E}_1 or \overline{E}_2 to \overline{O}_n					
t _{PLH}	Propagation Delay	5.0	1.0	12.5	ns	
	E_3 to \overline{O} n					
t _{PHL}	Propagation Delay	5.0	1.0	12.5	ns	
	E_3 to \overline{O} n					

Note 4: Voltage Range 5.0 is 5.0V ±0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation	60.0	pF	$V_{\rm CC} = 5.0 V$
	Capacitance			

54FCT138

www.national.com

www.national.com

6

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.