

54FCT/74FCT245 Octal Bidirectional Transceiver with TRI-STATE® Inputs/Outputs

General Description

The 'FCT245 contains eight non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus-oriented applications. The Transmit/Receive (T/ \overline{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

- NSC54FCT/74FCT245 is pin and functionally equivalent to IDT54FCT/74FCT245
- Controlled output edge rates and undershoot for improved noise immunity. Internal split ground for improved noise immunity.
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- \blacksquare I_{OL} = 64 mA (commercial) and 48 mA (military)
- CMOS power levels
- **ESD** immunity $\geq 4 \text{ kV}$ typ
- Military product compliant to MIL-STD 883 and Standard Military Drawing #5962-87629

Ordering Code: See Section 8

Logic Symbols

Pin Names	Description
OE	Output Enable Input
T/R	Transmit/Receive Input
$A_0 - A_7$	Side A TRI-STATE
	Inputs or TRI-STATE
	Outputs
B0-B7	Side B TRI-STATE
	Inputs or TRI-STATE
	Outputs

Truth Table

Inp	uts	Outputs			
ŌE	T/R	Cutputs			
L	L	Bus B Data to Bus A			
L	н	Bus A Data to Bus B			
Ц	X	HIGH-Z State			

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Connection Diagrams

TL/F/10241-4

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GND	(V _{TERM})
54FCT	0.5V to 7.0V
74FCT	-0.5V to 7.0V
Temperature under Bias (T _{BIAS})	
74FCT	-55°C to +125°C
54FCT	-65°C to +135°C
Storage Temperature (T _{STG})	
74FCT	-55°C to +125°C
54FCT	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA
A	

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
54FCT	4.5V to 5.5V
74FCT	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (TA)	
54FCT	-55°C to +125°C
74FCT	0°C to +70°C
Junction Temperature (T _{.1})	
CDIP	175°C
PDIP	140°C

DC Characteristics for 'FCT Family Devices Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to ± 70 °C; Mil: $V_{CC} = 5.0V \pm 10\%$, $T_A \approx -55$ °C to +125°C, $V_{HC} = V_{CC} - 0.2V$.

Symbol	Parameter	54	FCT/74	FCT	Units	Conditions		
Symbol		Min	Тур	Max	Units			
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	v			
lιн	Input High Current (except I/O Pins)			5.0 5.0	μA	V _{CC} ≈ Max	V _I = V _{CC} V _I = 2.7V (Note 2)	
ін	Input High Current (I/O Pins Only)			15 15	μA	V _{CC} = Max	$V_1 = V_{CC}$ $V_1 = 2.7V$ (Note 2)	
lιL	Input Low Current (except I/O Pins)			-5.0 -5.0	μΑ	V _{CC} = Max	V ₁ = 0.5V (Note 2) V ₁ = GND	
lıL	Input Low Current (I/O Pins Only)			-15 -15	μΑ	V _{CC} = Max	V ₁ = 0.5V (Note 2) V ₁ = GND	
loz	Maximum TRI-STATE Current			10.0 10.0 10.0 10.0	μΑ	V _{CC} = Max	$V_{I} = V_{CC}$ $V_{I} = 2.7V (Note 2)$ $V_{I} = 0.5V (Note 2)$ $V_{I} = GND$	
VIK	Clamp Diode Voltage		-0.7	-1.2	V	$V_{CC} = Min; I_N = -18 \text{ mA}$		
los	Short Circuit Current	-60	-120		mA	V _{CC} = Max (Note 1);	V _O ≈ GND	
V _{OH}	Minimum High Level	2.8	3.0			$V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{HC}; I_{OH} = -32$		
	Output Voltage	V _{HC} 2.4 2.4	V _{CC} 4.3 4.3		v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -300 \ \mu A$ $I_{OH} = -12 \ mA$ (Mil) $I_{OH} = -15 \ mA$ (Com)	
VOL	Maximum Low Level		GND	0.2		$V_{\rm CC} = 3V; V_{\rm IN} = 0.2$	V or V _{HC} ; I _{OL} = 300 μA	
	Output Voltage		GND 0.3 0.3	0.2 0.55 0.55	v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 300 \ \mu A$ $I_{OL} = 48 \ mA \ (Mil)$ $I_{OL} = 64 \ mA \ (Com)$	

245

DC Characteristics for 'FCT Family Devices (Continued) Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$; Mil: $V_{CC} = 5.0V \pm 10\%$, $T_A = -55^{\circ}C$ to +125°C, $V_{HC} = V_{CC} - 0.2V$.

Symbol	Parameter	74FCT			Units	Conditions		
		Min	Тур	Max	Units	Conditions		
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:VC} \begin{array}{l} V_{CC} = Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2V \\ \mathfrak{f}_I = 0 \end{array}$		
ΔI _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		
ICCD	Dynamic Power Supply Current (Note 4)		0.25	0.40	mA/MHz	$\label{eq:VCC} \begin{array}{l} V_{CC} = Max \\ Outputs Open \\ \overline{OE}_A = \overline{OE}_B = GND \\ One Input Toggling \\ 50\% \ Duty Cycle \end{array}$	$ \begin{array}{l} V_{IN} \geq V_{HC} \\ V_{IN} \leq 0.2 V \end{array} $	
lc	Total Power Supply Current (Note 6)		1.5	4.5		V _{CC} = Max Outputs Open T/R = OE = GND	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
			1.8	5.0	mA	f _l = 10 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	
	3.0 10.0	(Note 5) $V_{CC} = Max$ Outputs Open $T/\overline{R} = \overline{OE} = GND$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$					
			5.0	14.5		f _I = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	
VH	Input Hysteresis on Clock Only		200		mV			

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$ $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_{CP}/2 + f_I N_I)$

I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_IN = 3.4V) D_H = Duty Cycle for TTL Inputs High

NT = Number of Inputs at DH

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_I = Input Frequency

NI = Number of Inputs at fi

All currents are milliamps and all frequencies are in megahertz.

Note 7: For 54FCT, $I_{CCD} = 0.40 \text{ mA/MHz}$.

Refer to applicable standard military drawing or NSC Table I for test conditions and I_C/I_{CC} limits.

Symbol Parameter		54FCT/74FCT	74FC	т	54	FCT		
	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = 5.0V$	T _A , V _{CC} = R _L = 50 C _L = 50	00Ω	$\begin{array}{l} \textbf{T_{A}, V_{CC} = Mil} \\ \textbf{R_{L} = 500\Omega} \\ \textbf{C_{L} = 50 pF} \end{array}$		Units	Fig. No.
		Тур	Min (Note)	Max	Min	Max		L
t _{PLH} t _{PHL}	Propagation Delay A to B, B to A	5.0	1.5	7.0	1.5	7.5	ns	2-8
t _{PZH} t _{PZL}	Output Enable Time OE to A or B	6.0	1.5	9.5	1.5	10.0	ns	2-8
t _{PHZ} t _{PHL}	Output Disable Time OE to A or B	6.0	1.5	7.5	1.5	10.0	ns	2-11
t _{PZH} t _{PZL}	Output Enable Time T/\overline{R} to A or B	6.0	1.5	9.5	1.5	10.0	ns	2-11
t _{PHZ} t _{PLZ}	Output Enable Time T/\overline{R} to A or B	6.0	1.5	7.5	1.5	10.0	ns	2-11

Note: Minimum limits guaranteed but not tested on propagation delays.

Capacitance $T_A = +25^{\circ}C$, f = 1.0 MHz

Symbol	Parameter (Note)	Тур	Max	Units	Conditions
C _{IN}	Input Capacitance	6	10	pF	$V_{IN} = 0V$
C _{OUT}	Output Capacitance	8	12	pF	$V_{OUT} = 0V$

Note: This parameter is measured at characterization but not tested. C_{OUT} for 74FCT245 only.