

54FCT377/74FCT377 Octal D Flip-Flop with Clock Enable

General Description

The FCT377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously, when the Clock Enable (\overline{CE}) is LOW.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The \overline{CE} input must be stable only one setup time prior to the LOW-to-HIGH clock transition for predictable operation.

FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Ordering Code: See Section 8

Logic Symbols

Features

- NSC 54FCT/74FCT377 is pin and functionally equivalent to IDT 54FCT/74FCT377
- Ideal for addressable register applications
- Clock enables for address and data synchronization applications
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- I_{OL} = 48 mA (com), 32 mA (mil)
- CMOS power levels
- ESD immunity ≥ 4 kV typ
- Military product compliant to MIL-STD 883 and Standard Military Drawing # 5962-87627

Connection Diagrams

Pin Names	Description
D ₀ -D ₇ CE Q ₀ -Q ₇	Data Inputs Clock Enable (Active LOW) Data Outputs
CP	Clock Pulse Input

6-35

377

Mode Select-Function Table

Operating Mode		Inputs	Outputs		
Operating Mode	СР	CE	Dn	Qn	
Load '1'	1	L	н	н	
Load '0'	5	L	L	L	
Hold (Do Nothing)	1	н	x	No Change	
,	X	н	X	No Change	

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

- = LOW-to-HIGH Clock Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GND

(VTERM)	
54FCT	-0.5V to +7.0V
74FCT	-0.5V to +7.0V
Temperature Under Bias (T _{BIAS})	
74FCT	-55°C to +125°C
54FCT	-65°C to +135°C
Storage Temperature (T _{STG})	
74FCT	-55°C to +125°C
54FCT	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
54FCT	4.5V to 5.5V
74FCT	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A)	
54FCT	-55°C to +125°C
74FCT	-0°C to +70°C
Junction Temperature (TJ)	
CDIP	175°C
PDIP	140°C

DC Characteristics for 'FCT Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V ±5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V ±10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} - 0.2V.

Symbol	Parameter	54FCT/74FCT			Units	Conditions		
		Min Typ Max		Units				
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	v			
Ίн	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	V _I = V _{CC} V _I = 2.7V (Note 2)	
JIL	Input Low Current			-5.0 -5.0	μΑ	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND	
VIK	Clamp Diode Voltage		-0.7	-1.2	v	$V_{CC} = Min; I_N = -18 \text{ mA}$		
los	Short Circuit Current	-60	-120		mA	$V_{CC} = Max (Note 1); V_O = GND$		
V _{OH}	Minimum High Level	2.8	3.0			$V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{HC}; I_{OH} = -32 \mu$		
	Output Voltage	V _{HC}	Vcc		v	V _{CC} = Min	I _{OH} = <i>—</i> 300 µА	
		2.4	4.3		v	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -12 mA (Mil)	
		2.4	4.3				$I_{OH} = -15 \text{ mA} \text{ (Com)}$	
V _{OL}	Maximum Low Level		GND	0.2		$V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{HC}; I_{OL} = 300 \ \mu M$		
	Output Voltage		GND	0.2	v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	l _{OL} = 300 μA	
			0.3	0.5			l _{OL} = 32 mA (Mil)	
			0.3	0.5			I _{OL} = 48 mA (Com)	

377

37

DC Characteristics for 'FCT Family Devices (Continued) Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$; Mil: $V_{CC} = 5.0V \pm 10\%$, $T_A = -55^{\circ}C$ to +125°C, $V_{HC} = V_{CC} - 0.2V$.

Symbol	Parameter	74FCT		Units	Conditions		
		Min Typ Max		Onita	Conditions		
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2V \\ f_I = 0 \end{array}$	×
ΔI _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)	e.
ICCD	Dynamic Power Supply Current (Note 4)		0.25	0.30	mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{CE} = GND$ One Input Toggling 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V
lc	Total Power Supply Current (Note 6)		1.5	4.0		$V_{CC} = Max$ Outputs Open $f_{CP} = 10 \text{ MHz}$ 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V
-			1.8	6.0	mA	$\overline{CE} = GND$ f ₁ = 5 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$
			3.0	9.0		(Note 5) $V_{CC} = Max$ Outputs Open $f_{CP} = 10 \text{ MHz}$ 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V
			5.0	16.8		$\overline{CE} = GND$ f _I = 2.5 MHz Eight Bits Toggling	V _{IN} = 3.4V V _{IN} = GND
V _H	Input Hysteresis on Clock Only		200		mV		

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input (V_{IN} = 3.4V); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_{CP}/2 + f_I N_I)$ $I_C = Quescent Current$

 ΔI_{CC} = Power Supply Current for a TTL HIGH Input (VIN = 3.4V)

D_H = Duty Cycle for TTL inputs HIGH

NT = Number of Inputs at DH

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_I = Input Frequency N₁ = Number of Inputs at f₁

All currents are in milliamps and all frequencies are in megahertz.

Note 7: For 54FCT, $I_{CCD} = 0.4 \text{ mA/MHz}$.

Refer to applicable standard military drawing or NSC Table I for test conditions and I_C/I_{CC} limits.

		54FCT/74FCT	74FCT		54FCT			1
Symbol	Parameter	$T_{A} = 25^{\circ}C$ $V_{CC} = 5.0V$	R _L =	c = Com 500Ω 50 pF	$ \begin{array}{l} \textbf{T}_{A}, \textbf{V}_{CC} = \textbf{Mil} \\ \textbf{R}_{L} = 500\Omega \\ \textbf{C}_{L} = 50 \textbf{pF} \end{array} $		Units	Fig. No.
		Тур	Min (No	ote) Max	Min	Max		
tPLH tPHL	Propagation Delay C_P to \overline{O}_n	7.0	2.0	13.0	2.0	13.0	ns	2-8
tsu	Set Up Time HIGH or LOW D _n to C _P	1.0	2.5		4.0		ns	2-10
tH	Hold Time HIGH or LOW D _n to C _P	1.0	2.0		2.0		ns	2-10
tsu	Set Up Time HIGH or LOW CE to C _P	1.5	4.0		4.5		ns	2-10
tн	Hold Time HIGH or LOW CE to C _P	3.0	1.5		2.0		ns	2-10
tw	Clock Pulse Width, LOW	4.0	7.0		7.0		ns	2-9

377

Note: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance $T_A = +25^{\circ}C$, f = 1.0 MHz

Symbol	Parameter	Тур	Max	Units	Conditions
CIN	Input Capacitance	6	10	pF	$V_{ N} = 0V$
COUT	Output Capacitance	8	12	pF	V _{OUT} = 0V

Note: This parameter is measured at characterization but not tested.

COUT for 74FCT only.

6-39