

54FCT/74FCT534A Octal D Flip-Flop with TRI-STATE® Outputs

General Description

The 'FCT534A is a high-speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (OE) are common to all flip-flops. The 'FCT534A is the same as the 'FCT374A except that the outputs are inverted.

Features

- NSC 54/74FCT534A is pin and functionally equivalent to IDT 54/74FCT534A
- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- TTL input and output level compatible
- TTL inputs accept CMOS levels
- High current latch up
- I_{OL} = 48 mA (Com), 32 mA (Mil)
- Military product compliant to MIL-STD-883

Ordering Code: See Section 8 Logic Symbols

Description

TRI-STATE Output Enable Input

Complementary TRI-STATE Outputs

Data Inputs

Clock Pulse Input

Pin Names

 $D_0 - D_7$

0-07

CP

OE

Pin Assignment for DIP, Flatpak and SOIC ŌĒ 20 Vcc • ō7 ō, 2 19 Do 3 18 D7 D₄ De ō, 5 ۰Ö۶ · 0₅ ō, 6 D, · D5 D3 8 - D4 13 ō, 9 -ō₄ 12 GND -10 11 CP TI /F/10619-3 **Pin Assignment** for LCC D3 D2 02 01 D1

Connection Diagrams

7-38

Functional Description

The 'FCT534A consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP)

Logic Diagram

flip-flops.

TL/F/10619-5

transition. With the Output Enable (OE) LOW, the contents

of the eight flip-flops are available at the outputs. When the

OE is HIGH, the outputs go to the high impedance state.

Operation of the OE input does not affect the state of the

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Function Table

	Inputs				
СР	OE	D	ō		
5	L	н	L		
1	L	L	Н		
L	L	x	\overline{O}_0		
X	н	х	Z		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

= LOW-to-HIGH Clock Transition

Z = High Impedance $\overline{O}_0 =$ Value stored from previous clock cycle

534A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect

to GND (V _{TERM})	
54FCTA	-0.5V to +7.0V
74FCTA	-0.5V to +7.0V
Temperature Under Bias (T _{BIAS})	
74FCTA	55°C to + 125°C
54FCTA	-65°C to +135°C
Storage Temperature (TSTG)	
74FCTA	-55°C to +125°C
54FCTA	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA
Mate di Abashda madaning adara an Abasa in	den a barrand rebieb damaan

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM FCT circuits outside databook specifications.

Recommended Operating Conditions

4.5V to 5.5V
4.75V to 5.25V
0V to V _{CC}
0V to V _{CC}
-55°C to +125°C
-0°C to +70°C
175°C
140°C

DC Characteristics for 'FCTA Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V \pm 10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} - 0.2V.

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions	
Cymbol	Tarameter	Min	Тур	Max	Onica	5	
VIH	Minimum High Level Input Voltage	2.0			v		
VIL	Maximum Low Level Input Voltage			0.8	v		
Iн	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	$V_{I} = V_{CC}$ $V_{I} = 2.7V \text{ (Note 2)}$
IIL	Input Low Current			-5.0 -5.0	μA	V _{CC} = Max	V ₁ = 0.5V (Note 2) V ₁ = GND
loz	Maximum TRI-STATE Current			10.0 10.0 10.0 10.0	μΑ	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V (Note 2)$ $V_{O} = 0.5V (Note 2)$ $V_{O} = GND$
VIK	Clamp Diode Voltage		-0.7	- 1.2	v	$V_{CC} = Min; I_N = -18 \text{ mA}$	
los	Short Circuit Current	-60	- 120		mA	V _{CC} = Max (Note 1); V _O = GND	
V _{OH}	Minimum High Level Output Voltage	2.8 V _{HC} 2.4 2.4	3.0 V _{CC} 4.3 4.3		v	$\label{eq:VCC} \begin{split} V_{CC} &= 3V; V_{IN} = 0.2\\ V_{CC} &= Min\\ V_{IN} &= V_{IH} \text{ or } V_{IL} \end{split}$	$\frac{V \text{ or } V_{HC}; I_{OH} = -32 \mu\text{A}}{I_{OH} = -300 \mu\text{A}}$ $I_{OH} = -12 \text{mA} (\text{Mil})$ $I_{OH} = -15 \text{mA} (\text{Com})$
V _{OL}	Maximum Low Level Output Voltage		GND GND 0.3 0.3	0.2 0.2 0.5 0.5	v	$\label{eq:VCC} \begin{split} V_{CC} &= 3V; V_{IN} = 0.2\\ V_{CC} &= Min\\ V_{IN} &= V_{IH} \text{ or } V_{IL} \end{split}$	$V \text{ or } V_{\text{HC}}; I_{\text{OL}} = 300 \ \mu\text{A}$ $I_{\text{OL}} = 300 \ \mu\text{A}$ $I_{\text{OL}} = 32 \ \text{mA} \ (\text{Mil})$ $I_{\text{OL}} = 48 \ \text{mA} \ (\text{Com})$
V _H	Input Hysteresis on Clock Only		200		mV		

DC Characteristics for 'FCTA Family Devices (Continued)

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V ±5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V ±10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} - 0.2V.

Symbol	bol Parameter		54FCTA/74FCTA			Conditions		
Symbol	Farameter	Min	Тур	Max	Units	Conc	ntiona	
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:VCC} \begin{array}{l} V_{CC} = Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2V \\ f_I = 0 \end{array}$		
∆I _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.40	mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{OE} = GND$ One Input Toggling 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
lc	Total Power Supply Current (Note 6)		1.5	4.0		$V_{CC} = Max$ Outputs Open $f_{CP} = 10 \text{ MHz}$ $\overline{OE} = GND$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			1.8	6.0	mA	fl = 5 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} \approx 3.4V$ $V_{IN} = GND$	
			3.0	7.8		(Note 5) $V_{CC} = Max$ Outputs Open $\overline{OE} = GND$ $f_{CP} = 10 MHz$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
			5.0	16.8		f _I = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$

I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

D_H = Duty Cycle for TTL inputs High

NT = Number of Inputs at DH

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_l = Input Frequency

NI = Numbers of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

534A

		54FCTA/74FCTA	A 74FCTA		54FCTA		
Symbol Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = 5.0V$	$T_{A}, V_{CC} = MII$ $C_{L} = 50 \text{ pF}$		T _A V _{CC} = Com C _L = 50 pF	Units	Fig
		Тур	Min (Note 1)	Max	Min M (Note 1)	ax	
telh tehl	Propagation Delay C _P to On	4.5	1.5	6.5		ns	2-9
tpzh tpzL	Output Enable Time	5.5	1.5	6.5		ns	2-1
tphz tphL	Output Disable Time	4.0	1.5	5.5		ns	2-1
ts	Set Up Time High or Low Dn to CP	1.0	2.0			ns	2-1
th	Hold Time High or Low Dn to CP	1.0	1.5			ns	2-1
tw	CP Pulse Width High or Low	4.0	5.0			ns	2-9

High or Low | Note 1: Minimum limits guaranteed but not tested on propagation delays.

Capacitance $T_{A}=\,+\,25^{\circ}C,\,f_{I}=\,1.0~\text{MHz}$

Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Input Capacitance	6	10	pF	$V_{IN} = 0V$
COUT	Output Capacitance	8	12	pF	$V_{OUT} = 0V$

Note: This parameter is measured at characterization but not tested.