

54FCT540 Inverting Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

The 'FCT540 is an inverting octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

The FACT540 is functionally equivalent to the FCT240 while providing broadside pinout.

The FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT features undershoot corrector and a split ground bus for superior performance.

Features

- NSC 54FCT540 is pin and functionally equivalent to IDT 54FCT540
- Controlled output edge rates and undershoot for improved noise immunity. Internal split ground for improved noise immunity
- Input clamp diodes to limit bus reflections
 - TTL/CMOS input and output level compatible
- I_{OL} = 48 mA
- CMOS power levels
- 2 kV minimum ESD immunity
- Military product compliant to MIL-STD 883 and Standard Military Drawing #5962-89767

Ordering Code: See Section 8

Logic Symbol

Connection Diagrams

Pin Names	Description
OE1, OE2	TRI-STATE Output Enable Inputs
I ₀ -I ₇	Inputs
$\overline{O}_0 - \overline{O}_7$	Outputs

	Inputs	Outputs	
OE ₁	OE ₂	In	Outputs
L	L	н	L
н	X	X	Z
X	н	x	Z
L L	L L	L	н

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Z = High Impedance

6-51

540

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

with Respect to GND (V _{TERM}) 54FCT	-0.5V to 7.0V
Temperature under Bias (T _{BIAS}) 54FCT	-65°C to +135°C
Storage Temperature (T _{STG}) 54FCT	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Supply Voltage (V _{CC}) 54FCT	4.5V to 5.5V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A) 54FCT	-55°C to +125°C
Junction Temperature (T _J) CDIP PDIP	175℃ 140℃

DC Characteristics for 'FCT Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V \pm 10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} - 0.2V.

Symbol Par	Parameter	54FCT			Units	Conditions	
Symbol	Faiallete)	Min	Тур	Max	Unita		
VIH	Minimum High Level Input Voltage	2.0			v		
VIL	Maximum Low Level Input Voltage			0.8	v		
łн	Input High Current			5.0 5.0	μA	V _{CC} = Max	$V_{I} = V_{CC}$ $V_{I} = 2.7V$ (Note 2)
μ	Input Low Current			-5.0 -5.0	μA	V _{CC} = Max	$V_l = 0.5V$ (Note 2) $V_l = GND$
loz	Maximum TRI-STATE Current		÷	10.0 10.0 10.0 10.0	μΑ	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V (Note 2)$ $V_{O} = 0.5V (Note 2)$ $V_{O} = GND$
VIK	Clamp Diode Voltage		-0.7	-1.2	V	$V_{CC} = Min; I_N = -18 \text{ mA}$	
los	Short Circuit Current	-60	- 120		mA	V _{CC} = Max (Note 1); V _O = GND	
V _{OH}	Minimum High Level	2.8	3.0			$V_{\rm CC} = 3V; V_{\rm IN} = 0.2$	$V \text{ or } V_{HC}; I_{OH} = -32 \mu\text{A}$
	Output Voltage	V _{HC} 2.4 2.4	V _{CC} 4.3 4.3		v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -300 \ \mu A$ $I_{OH} = -12 \ mA (Mil)$ $I_{OH} = -15 \ mA (Com)$
V _{OL}	Maximum Low Level		GND	0.2		$V_{CC} = 3V; V_{IN} = 0.2$	$V \text{ or } V_{HC}; I_{OL} = 300 \ \mu\text{A}$
	Output Voltage		GND 0.3 0.3	0.2 0.55 0.55	v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 300 \ \mu A$ $I_{OL} = 48 \ mA$ (Mil) $I_{OL} = 64 \ mA$ (Com)
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:V_CC} \begin{split} V_{CC} &= Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2 \\ f_I &= 0 \end{split}$	2V
Δl _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)	

DC Characteristics for 'FCT Family Devices (Continued) Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = $\overline{0}^{\circ}$ C to +70°C; Mil: V_{CC} = 5.0V \pm 10%, T_A = -55°C to + 125°C, $V_{HC} = V_{CC} - 0.2V$.

Symbol	vmbol Parameter		54FCT		Units	Conditions	
Symbol Parameter		Min Typ Max		Unita			
ICCD	Dynamic Power Supply Current (Note 4)		0.35	0.4	mA/MHz	$\begin{array}{l} V_{CC} = Max \\ Outputs Open \\ \overline{OE}_A = \overline{OE}_B = GND \\ One Input Toggling \\ 50\% Duty Cycle \end{array}$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$
IC	Total Power Supply Current (Note 6)			5.5	mA	$V_{CC} = Max$ Outputs Open $\overline{OE}_A = \overline{OE}_B = GND$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$
				6.0		f _I = 10 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input (VIN = 3.4V); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$

I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

 $D_H = Duty Cycle for TTL Inputs High$

NT = Number of Inputs at DH

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f₁ = Input Frequency

NI = Number of Inputs at fi

All currents are milliamps and all frequencies are in megahertz.

540

		54FCT/74FCT	74FCT	54	FCT		
Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = 5.0V$	$\begin{array}{l} \textbf{T_A, V_{CC} = Com} \\ \textbf{R_L} = 500\Omega \\ \textbf{C_L} = 50 \textbf{pF} \end{array}$	$\begin{array}{l} \textbf{T_A, V_{CC} = MII} \\ \textbf{R_L} = 500\Omega \\ \textbf{C_L} = 50 \ \textbf{pF} \end{array}$		Units	Fig. No.
	Тур	Min Max	Min	Max			
t _{PLH} t _{PHL}	Propagation Delay D _n to O _n	5.0		1.5	9.5	ns	2-1
t _{PZH} t _{PZL}	Output Enable Time	7.0		1.5	12.5	ns	2-1
t _{PHZ} t _{PLZ}	Output Disable Time	6.0		1.5	9.5	ns	2-1

Capacitance T_A = +25°C, f = 1.0 MHz

Symbol	Parameter (Note)	Тур	Max	Units	Conditions
C _{IN}	Input Capacitance	6	8	рF	$V_{IN} = 0V$

Note: This parameter is measured at characterization but not tested.