

54FCT/74FCT563A Octal Latch with TRI-STATE® Outputs

General Description

The 'FCT563A is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable ($\overline{\text{OE}}$) inputs.

The 'FCT563A device is functionally identical to the 'FCT573A, but with inverted outputs.

FACTTM FCTA utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCTA features undershoot correction and split ground bus for superior performance.

Ordering Code: See Section 8

Logic Symbols

Features

- Inputs and outputs on opposite side of package allow easy interface with microprocessors
- Useful as input or output port for microprocessors
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- I_{OL} = 48 mA (Com), 32 mA (Mil)
- CMOS power levels
- 4 kV minimum ESD immunity
- Military product compliant to MIL-STD-883
- Inherently radiation tolerant

Connection Diagrams

563A

563A

Functional Description

The 'FCT563A contains eight D-type latches with TRI-STATE complementary outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are in the TRI-STATE mode. When OE is HIGH the buffers are in the high impedance mode but that does not interfere with entering new data into the latches.

Logic Diagram

Function Table

	Inputs	6	Outputs	Function	
ŌĒ	LE	D	0	Function	
н	х	х	Z	High-Z	
L	н	L	н	Transparent	
L	н	н	L	Transparent	
Ľ	L	Х	NC	Latched	

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance NC = No Change

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Terminal Voltage with Respect to GND (V-

Terminal Voltage with Respect to GND	(VTERM)
54FCTA	-0.5V to +7.0V
74FCTA	-0.5V to +7.0V
Temperature under Bias (T _{BIAS})	
74FCTA	-55°C to +125°C
54FCTA	-65°C to +135°C
Storage Temperature (T _{STG})	
74FCTA	-55°C to +125°C
54FCTA	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (IOUT)	120 mA
Note 1: Absolute maximum ratings are those value	es bevond which damage

to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
54FCTA	4.5V to 5.5V
74FCTA	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A) 54FCTA 74FCTA	−55°C to +125°C 0°C to +70°C
Junction Temperature (T _J) CDIP PDIP	175°C 140°C

DC Characteristics for 'FCTA Family Devices Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to ± 70 °C; Mil: $V_{CC} = 5.0V \pm 10\%$ $T_A = -55$ °C to +125°C, $V_{HC} = V_{CC} - 0.2V$

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
Symbol		Min	Тур	Max	Units	Conditions		
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	v			
ін	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	$V_{I} = V_{CC}$ $V_{I} = 2.7V \text{ (Note 2)}$	
l _{IL}	Input Low Current			-5.0 -5.0	μΑ	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND	
loz	Maximum TRI-STATE Current			10.0 10.0 - 10.0 - 10.0	μΑ	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V \text{ (Note 2)}$ $V_{O} = 0.5V \text{ (Note 2)}$ $V_{O} = \text{GND}$	
VIK	Clamp Diode Voltage		-0.7	-1.2	v	$V_{CC} = Min; I_N = -18 \text{ mA}$		
los	Short Circuit Current	-60	- 120		mA	V _{CC} = Max (Note 1); V _O = GND		
V _{OH}	Minimum High Level	2.8	3.0			$V_{CC} = 3V; V_{IN} = 0.2$	or V _{HC} ; I _{OH} = −32 µA	
	Output Voltage	V _{HC}	V _{CC}		v	V _{CC} = Min	I _{OH} = -300 μA	
		2.4	4.3			$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -12 \text{ mA}$ (Mil)	
		2.4	4.3				$I_{OH} = -15 \text{ mA} (Com)$	
V _{OL}	Maximum Low Level		GND	0.2		$V_{\rm CC} = 3V; V_{\rm IN} = 0.2V$	V or V _{HC} ; I _{OL} = 300 μA	
	Output Voltage		GND	0.2	v	V _{CC} = Min	$I_{OL} = 300 \ \mu A$	
			0.3	0.50		$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 32 mA (Mil)	
			0.3	0.50			$I_{OL} = 48 \text{ mA} \text{ (Com)}$	

563A

DC Characteristics for FCTA Family Devices (Continued) Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to +70°C; Mil: $V_{CC} = 5.0V \pm 10\%$ $T_A = -55$ °C to +125°C, $V_{HC} = V_{CC} - 0.2V$

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
Symbol	r arameter	Min Typ Max		Onits				
20I	Maximum Quiescent Supply Current	c	0.001	1.5	mA	$\begin{split} V_{CC} &= Max \\ V_{IN} \geq V_{HC} \leq 0.2V \\ f_I &= 0 \end{split}$		
∆l _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		
ICCD	Dynamic Power Supply Current (Note 4)		0.25	0.45	mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{OE} = GND$ $LE = V_{CC}$ One Input Toggling 50% Duty Cycle	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
lc	Total Power Supply Current (Note 6)		1.5	4.5		$V_{CC} = Max$ Outputs Open $\overline{OE} = GND$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
			1.8	5.0	mA	LE = V _{CC} f _l = 10 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	
			3.0	8.0		(Note 5) $V_{CC} = Max$ Outputs Open $\overline{OE} = GND$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			5.0	14.5	0	LE = V _{CC} f _l = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	V _{IN} = 3.4V V _{IN} = GND	
V _H	Input Hysteresis on Clock Only		200		mV			
Note 2: Th Note 3: Pe Note 4: Th Note 5: Vá Note 6: Ic Ic Ic D, NT Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic	aximum test duration not to exceed one sins parameter guaranteed but not tested. er TTL driven input (V _{IN} = 3.4V); all other his parameter is not directly testable, but is alues for these conditions are examples of = I _{QUIESCENT} + I _{INPUTS} + I _{DYNAMIC} = I _{CC} + Δ I _{CC} μ _{INT} + I _{CCD} (f _{CP} /2 + f _I _C = Quiescent Current C _C = Power Supply Current for a TTL Hig _T = Number of Inputs at D _H = Clock Frequency for Register Devices = INUmber of Inputs at f ₁	inputs at V _C s derived for f the I _{CC} forr NI) h Input (VIN ut Transition	_C or GN use in [*] nula. Th = 3.4V Pair (HL	ND. Total Pow lese limits () .H or LHL	er Supply calcu are guaranteed	lations.		

Symbol		54FCTA/74FCTA	74FCTA		54FCTA			
	Parameter	$T_{A} = 25^{\circ}C$ $V_{CC} = 5.0V$	RL =	c = Com 500Ω 50 pF	$ \begin{array}{l} \textbf{T_A, V_{CC} = Mil} \\ \textbf{R_L = 500\Omega} \\ \textbf{C_L = 50 pF} \end{array} $		Units	Fig. No.
		Тур	Min	Max	Min	Max	1	
^t PLH ^t PHL	Propagation Delay D_n to \overline{O}_n	4.0	1.5	5.2			ns	2-8
t _{PLH} t _{PHL}	Propagation Delay LE to \overline{O}_n	7.0	2.0	8.5			ns	2-8
t _{PZL} t _{PZH}	Output Enable Time	5.5	1.5	6.5			ns	2-11
t _{PHZ} t _{PLZ}	Output Disable Time	4.0	1.5	5.5			ns	2-11
ts	Set Up Tme High or Low D _n to LE	1.0	2.0				ns	2-10
tн	Hold Time High or Low D _n to LE	1.0	1.5				ns	2-10
tw	LE Pulse Width High or Low	4.0	5.0				ns	2-9

563A

Minimum limits are guaranteed but not tested on propagation delays.

Capacitance T_A = +25°C, f = 1.0 MHz

-

Symbol	Parameter	Тур	Max	Units	Conditions
CIN	Input Capacitance	6	10	рF	$V_{IN} = 0V$
COUT	Output Capacitance	8	12	pF	$V_{OUT} = 0V$

Note: This parameter is measured at characterization but not tested.