

54FCT/74FCT574 Octal D Flip-Flop with TRI-STATE® Outputs

General Description

The 'FCT574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

FACT FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance.

The 'FCT574 is functionally identical to the 'FCT374 except for the pinouts.

Ordering Code: See Section 8 Logic Symbols

Features

- NSC 54FCT/74FCT574 is pin and functionally equivalent to IDT 54FCT/74FCT574
- Controlled output edge rates and undershoot for improved noise immunity. Internal split ground for improved noise immunity.
- Input clamp diodes to limit bus reflections.
- TTL/CMOS input and output level compatible.
- I_{OL} = 48 mA (Com) and 32 mA (Mil)

Connection Diagrams

- CMOS power levels
- ESD immunity ≥ 4kV typ
- Military Product compliant to MIL-STD 883

574

Functional Description

The 'FCT574 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Function Table

Inputs			Internal Outputs		Function		
ŌĒ	CP	D	Q	O _N	1 dilotion		
н	н	L	NC	Z	Hold		
H I	н	н	NC	Z	Hold		
н	\sim	L	L	Z	Load		
н	5	н	н	Z	Load		
L	5	L	L	L	Data Available		
L	5	н	н	н	Data Available		
L	н	L	NC	NC	No Change in Data		
L	н	н	NC	NC	No Change in Data		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

- LOW-to-HIGH Transition

NC = No Change

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GND) (V _{TERM})
54FCT	-0.5V to +7.0V
74FCT	-0.5V to +7.0V
Temperature under Bias (T _{BIAS})	
74FCT	-55°C to +125°C
54FCT	-65°C to +135°C
Storage Temperature (T _{STG})	
74FCT	-55°C to +125°C
54FCT	~65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA
Note 4. Absolute maximum retings are these yeld	as howard which domage

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum ratings conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Supply Voltage (V _{CC}) 54FCT 74FCT	4.5V to 5.5V 4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A) 54FCT 74FCT	−55°C to +125°C 0°C to +70°C
Junction Temperature (TJ) CDIP PDIP	175°C 140°C

574

DC Characteristics for 'FCT Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V \pm 10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} -0.2V

Symbol	Parameter	54FCT/74FCT			Units	Conditions		
oymbol		Min	Тур	Max	Onits			
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	v			
ін	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	V ₁ = V _{CC} V ₁ = 2.7V (Note 2)	
l _{IL}	Input Low Current			-5.0 -5.0	μA	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND	
l _{oz}	Maximum TRI-STATE Current			10.0 10.0 10.0 10.0	μΑ	V _{CC} ≈ Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V \text{ (Note 2)}$ $V_{O} = 0.5V \text{ (Note 2)}$ $V_{O} = \text{GND}$	
VIK	Clamp Diode Voltage		-0.7	-1.2	v	$V_{CC} = Min; I_N = -18$	mA	
los	Short Circuit Current	-60	- 120		mA	V _{CC} = Max (Note 1); V	_O = GND	
V _{OH}	Minimum High Level	_	2.8	3.0		$V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{HC}; I_{OH} = -32 \mu\text{A}$		
	Output Voltage		V _{HC} 2.4 2.4	V _{CC} 4.3 4.3	v	V _{CC} = Min V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -300 \ \mu A$ $I_{OH} = -12 \ mA$ (Mil) $I_{OH} = -15 \ mA$ (Com)	
V _{OL}	Maximum Low Level		GND	0.2		$V_{CC} \approx 3V; V_{IN} = 0.2V$	or V _{HC} ; I _{OL} = 300 μA	
	Output Voltage		GND 0.3 0.3	0.2 0.5 0.5	v	V _{CC} = Min V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 300 \ \mu A$ $I_{OL} = 32 \ mA (Mil)$ $I_{OL} = 48 \ mA (Com)$	

574

DC Characteristics for 'FCT Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V ±5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V ±10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} -0.2V (Continued)

Symbol	Parameter	74FCT			Units	Conditions		
	raiameter	Min Typ Max		Olina				
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:V_CC} \begin{split} V_{CC} &= Max\\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2\\ f_I &= 0 \end{split}$	v	
∆I _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.25	mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{OE} = GND$ One Input Toggling 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
lc	Total Power Supply Current (Note 6)		1.5	4.0		$\overline{OE} = GND$ $V_{IN} \le$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			1.8	6.0	mA	$f_{CP} = 10 \text{ MHz}$ $f_1 = 5.0 \text{ MHz}$ One Bit Toggling 50% Duty Cycle	V _{IN} = 3.4V V _{IN} = GN[
			3.0	7.8		(Note 5) V _{CC} == Max Outputs Open OE = GND	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			5.0	16.8		$f_{CP} = 10 \text{ MHz}$ $f_I = 2.5 \text{ MHz}$ Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GNI$	

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one timo.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$

I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

D_H = Duty Cycle for TTL inputs High

N_T = Number of Inputs at D_H

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f₁ = Input Frequency

N_I = Number of Inputs at f_I

All currents are in milliamps and all frequencies are in megahertz.

Note 7: For 54FCT, $l_{CCD} = 0.40 \text{ mA/MHz}$.

Refer to applicable standard military drawing or NSC Table I for test conditions and I_C/I_{CC} limits.

Symbol		54FCT/74FCT	74FCT		54	FCT		
	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = 5.0V$	RL =	c = Mil 500Ω 50 pF	$ \begin{array}{l} \textbf{T}_{\textbf{A}}, \textbf{V}_{\textbf{CC}} = \textbf{Com} \\ \textbf{R}_{\textbf{L}} = 500\Omega \\ \textbf{C}_{\textbf{L}} = 50 \ \textbf{pF} \end{array} $			Fig. No.
		Тур	Min (No	ote) Max	Min Max			
t _{PLH} t _{PHL}	Propagation Delay CP to O _n	6.6	2.0	10.0	2.0	11.0	ns	2-8
t _{PZH} t _{PZL}	Output Enable Time	9.0	1.5	12.5	1.5	14.0	ns	2-11
t _{PHZ} t _{PLZ}	Output Disable Time	6.0	1.5	8.0	1.5	8.0	ns	2-11
t _{SU}	Set-Up Time High or Low D _n to CP	1.0	2.0		3.5		ns	2-10
tH	Hold Time High or Low D _n to CP	0.5	2.0		2.0		ns	2-10
tw	CP Pulse Width High or Low	4.0	7.0		7.0		ns	2-9

Note: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance ($T_A = +25^{\circ}C$, f = 1.0 MHz)

Symbol	Parameter (Note)	Тур	Max	Units	Conditions
CIN	Input Capacitance	6	10	pF	$V_{IN} = 0V$
COUT	Output Capacitance	8	12	ρF	V _{OUT} = 0V

Note: This parameter is measured during characterization but not tested.

COUT for 74FCT only.

574