

54FCT/74FCT574A Octal D Flip-Flop with TRI-STATE® Outputs

General Description

The 'FCT574A is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The 'FCT574A is functionally identical to the 'FCT374A except for the pinouts.

Features

- NSC 54/74FCT574A is pin and functionally equivalent to IDT54/74FCT574A
- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'FCT374A
- TRI-STATE outputs for bus-oriented applications
- 'FCT574A has TTL-compatible inputs
- IOL = 48 mA (Comm) and 32 mA (Mil)
- TTL inputs accept CMOS levels

Ordering Code: See Section 8

Logic Symbols

Connection Diagrams

Functional Description

The 'FCT574A consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Function Table

k	Inputs		Internal Outputs		Function		
OE	СР	D	Q	ON	1 unotion		
н	н	L	NC	z	Hold		
н	н	н	NC	z	Hold		
н	5	L,	L	z	Load		
н	1	н	н	z	Load		
L	5	L	L	L	Data Available		
L	1	н	н	н	Data Available		
L	н	L	NC	NC	No Change in Data		
L	н	н	NC	NC	No Change in Data		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

NC = No Change

NC = No Chang

Logic Diagram $C^{P} \xrightarrow{D_{0}} C^{D} \xrightarrow{D_{1}} C^{D} \xrightarrow{D_{2}} D^{3} \xrightarrow{D_{4}} D^{5} \xrightarrow{D_{6}} D^{7} \xrightarrow{D_{7}} D^{7} \xrightarrow{D_{7}} \overrightarrow{D_{1}} \xrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}} \xrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}} \overrightarrow{D_{1}$

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

574A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GND (VTERM) 54FCTA -0.5V to +7.0V

74FCTA	-0.5V to +7.0V
Temperature under Bias (T _{BIAS})	5500 10 10500
74FCTA	-55°C to +125°C
54FCTA	-65°C to +135°C
Storage Temperature (T _{STG})	
74FCTA	- 55°C to + 125°C
54FCTA	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT FCT circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
54FCTA	4.5V to 5.5V
74FCTA	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A)	
54FCTA	-55°C to +125°C
74FCTA	0°C to +70°C
Junction Temperature (TJ)	
CDIP	175°C
PDIP	140°C

574A

DC Characteristics for 'FCTA Family Devices Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to +70°C; Mil: $V_{CC} = 5.0V \pm 10\%$, $T_A = -55$ °C to +125°C, $V_{HC} = V_{CC} - 0.2V$

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
Cymbol	rananotor	Min	Тур	Мах	Units			
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	v			
Чн	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	$V_I = V_{CC}$ $V_I = 2.7V$ (Note 2)	
lιL	Input Low Current			5.0 5.0	μΑ	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND	
loz	Maximum TRI-STATE Current			10.0 10.0 10.0 10.0	μΑ	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V \text{ (Note 2)}$ $V_{O} = 0.5V \text{ (Note 2)}$ $V_{O} = \text{GND}$	
VIK	Clamp Diode Voltage		-0.7	- 1.2	v	V_{CC} = Min; I _N = -18	3 mA	
los	Short Circuit Current	-60	-120		mA	V _{CC} = Max (Note 1); V _O = GND		
VOH	Minimum High Level		2.8	3.0		$V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{HC}; I_{OH} = -32 \mu\text{A}$		
	Output Voltage		V _{HC} 2.4 2.4	V _{CC} 4.3 4.3	v	V _{CC} = Min V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -300 \ \mu A$ $I_{OH} = -12 \ mA (Mil)$ $I_{OH} = -15 \ mA (Com)$	
V _{OL}	DL Maximum Low Level		GND	0.2		V_{CC} = 3V; V_{IN} = 0.2V or $V_{HC}; I_{OL}$ = 300 μA		
	Output Voltage		GND 0.3 0.3	0.2 0.5 0.5	v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 300 \ \mu A$ $I_{OL} = 32 \ mA (Mil)$ $I_{OL} = 48 \ mA (Com)$	

DC Characteristics for 'FCTA Family Devices Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to ± 70 °C; Mil: $V_{CC} = 5.0V \pm 10\%$, $T_A = -55$ °C to +125°C, $V_{HC} = V_{CC} - 0.2V$ (Continued)

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
	r ai diffetei	Min Typ Max		Units	Conditions			
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:V_CC} \begin{split} V_{CC} &= Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2V \\ f_I &= 0 \end{split}$		
ΔI _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.25	mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{OE} = GND$ One Input Toggling 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
•	Total Power Supply Current (Note 6)		1.5	4.0	mA	$\begin{array}{c} \text{Outputs Open} \\ \hline \text{OE} = \text{GND} \\ \hline \text{f}_{I} = 5.0 \text{ MHz} \\ \hline \text{One Bit Toggling} \\ \end{array} V_{IN} = \end{array}$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
		1	1.8	6.0			V _{IN} = 3.4V V _{IN} = GNE	
			3.0	7.8		(Note 5) V _{CC} = Max Outputs Open OE = GND	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			5.0	16.8		$f_{CD} = 10 \text{ MHz}$ $f_1 = 2.5 \text{ MHz}$ Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GNE$	

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input (VIN = 3.4V); all other inputs at VCC or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$

I_{CC} = Quiescent Current

ΔI_{CC} = Power Supply Current for a TTL High Input (VIN = 3.4V)

D_H = Duty Cycle for TTL inputs High

NT = Number of Inputs at DH

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_I = Input Frequency

NI = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

Symbol		54FCTA/74FCTA	74FCTA		54F	СТА	Units	Fig. No.
	Parameter	$\begin{array}{l} \textbf{T_A}=~+25^{\circ}\textbf{C}\\ \textbf{V_{CC}}=~5.0\textbf{V} \end{array}$	R _L =	c = Com 500Ω 50 pF	$ \begin{array}{c} \textbf{T}_{A}, \textbf{V}_{CC} = \textbf{Mil} \\ \textbf{R}_{L} = 500\Omega \\ \textbf{C}_{L} = 50 \textbf{pF} \end{array} $			
		Тур	Min	Max	Min	Max	1	
t _{PLH} t _{PHL}	Propagation Delay CP to O _n	4.5	2.0	6.5			ns	2-8
tpzH tpzL	Output Enable Time	5.5	1.5	6.5			ns	2-11
t _{PHZ} t _{PLZ}	Output Disable Time	4.0	1.5	5.5			ns	2-11
ts∪	Set-Up Time High or Low D _n to CP	1.0	2.0				ns	2-10
tH	Hold Time High or Low D _n to CP	0.5	1.5	Ţ.			ns	2-10
tw	CP Pulse Width High or Low	4.0	5.0				ns	2-9

Note 1: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance (T_A = +25°C, f = 1.0 MHz)

Symbol	Symbol Parameter (Note 1)		Max	Units	Conditions
CIN	Input Capacitance	6	10	рF	$V_{IN} = 0V$
COUT	Output Capacitance	8	12	рF	V _{OUT} = 0V

574A