National Semiconductor

54LS248/DM74LS248 BCD to 7-Segment Decoder (with 2 k Ω Pull-Up Resistors)

General Description

The 'LS248 has active HIGH outputs with internal 2 k Ω pull-up resistors. It has the same electrical characteristics and pin connections as the 'LS48. The only difference is that the 'LS248 will light the top bar (segment a) for numeral 6 and the bottom bar (segment d) for numeral 9. For detailed description and specifications please refer to the 'LS48 data sheet.

Pin Names	Description
A0-A3	BCD Inputs
RBI	Ripple Blanking Input (Active LOW)
LT	Lamp Test Input (Active LOW)
BI/RBO	Blanking Input (Active LOW) or
	Ripple Blanking Output (Active LOW)
a-g	Segment Outputs (Active HIGH)

LS248

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS248			DM74LS248			Units
	i arameter	Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Input Voltage	2			2			v
VIL	Low Level Input Voltage			0.7			0.8	v
ЮН	High Level Output Voltage			-0.1			-0.1	mA
lol	Low Level Output Current			2			6	mA
TA	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 mA$				-1.5	ν
VOH	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max,$	54LS	2.4			v
		V _{IL} = Max	DM74	2.4			
VOL	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max,$	54LS			0.4	
		V _{IH} = Min	DM74			0.5	v
		$I_{OL} = 3.2 \text{ mA}, V_{CC} = \text{Min}$	DM74			0.4	
lį	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 10V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μA
կլ	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
los	Short Circuit	V _{CC} = Max	54LS	-0.3		-2.0	mA
	Output Current	(Note 2)	DM74	-0.3		-2.0	
Icc	Supply Current	V _{CC} = Max				38	mA
IOFF	Output High Current	Segment Inputs, V _O = 0.85V		-1.3			μA

Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$R_L = 2 kG$	Units		
	i urumeter	Min	Max		
t _{PLH}	Propagation Delay Time Low to High Level Output		100	ns	
^t PHL	Propagation Delay Time High to Low Level Output		100	ns	

LS248