

PIN NAMES	DESCRIPTION	- F
СР	Clock Pulse Input (Active Rising Edge)	
к	Serial Expansion Input	
M	Mode Control Input	
MR	Asynchronous Master Reset Input (Active LOW)	1
X0 — X7	Multiplicand Data Inputs	
Y	Serial Multiplier Input	
s	Serial Product Output	

0.75/0.75

0.75/0.75

0.5/0.3

0.5/0.3

2.0/2.0

25/7.5(5.0)

FUNCTION TABLE

INPUTS						INTERNAL	OUTPUT	FUNCTION
MR	СР	к	М	Xi	Υ	Y _{a-1}	S	
-		L	L					Most Significant Multiplier Device
-		CS	н					Devices Cascaded in Multiplier String
L				OP		L	L	Load New Multiplicand and Clear Internal Sum and Carry Registers
н							-	Device Enabled
н	٦				L	L	AR	Shift Sum Register
н	Ч				L	Н	AR	Add Multiplicand to Sum Register and Shift
н	Т				н	L	AR	Subtract Multiplicand from Sum Register and Shift
н					н	н	AR	Shift Sum Register

AR = Output as required per Booth's algorithm

FUNCTIONAL DESCRIPTION — Referring to the logic diagram, the multiplicand $(X_0 - X_7)$ latches are enabled to receive new data when MR is LOW. Data that meet the setup time requirements is latched and stored when MR goes HIGH. The LOW signal on MR also clears the Y_{a-1} flip-flop as well as the carry-save flip-flops and the partial product register in the arithmetic section. *Figure a* is a conceptual logic diagram of a typical cell in the arithmetic section, except for the first (X₇) cell, in which K is the B_i input and M is incorporated into the carry logic. The cells use the carry-save technique to avoid the complexity and delays inherent in look-ahead carry schemes for longer words.

Figure b is a timing diagram for an 8 x 8 multiplication process. New multiplicand data enters the X latches during bit time T₀. It is assumed that MR goes LOW shortly after the CP rising edge that marks the beginning of T₀ and goes HIGH again shortly after the beginning of T₁. The LSB (Y₀) of the multiplier is applied to the Y input during T₁ and combines with X₀ in the least significant cell to form the appropriate D input (X₀ Y₀) to the sum flip-flop. This is clocked into the sum flip-flop by the CP rising edge at the beginning of T₂ and this LSB (S₀) of the product is available shortly thereafter at the S output of the package. The next-least bit Y₁ of the multiplier is also applied during T₂. The detailed logic design of the cell is such that during T₂ the D input to the sum flip-flop of the least significant cell, the X₁Y₀ product. Thus the term (X₁Y₀ + X₀Y₁) is formed at the D input of the least significant sum flip-flop during T₂ and this next-least term S₁ of the product is available at the S output shortly after the CP rising edge at the beginning of T₃. Due to storage in the two preceding cells and in its own carry flip-flop, the D input to the least significant sum flip-flop during T₃. Due to storage in the two preceding cells and in its own carry flip-flop, the D input to the least significant sum flip-flop during T₃. Due to storage in the two preceding cells and in its own carry flip-flop, the D input to the least significant sum flip-flop during T₃ will contain the products X₂Y₀ and X₁Y₁ as well as X₀Y₂. During each succeeding bit time the S output contains information formed one stage further upstream. For example, the S output during T₉ contains X₇Y₀, which was actually formed during T₁.

The MSB Y₇ (the sign bit Y_S) of the multiplier is first applied to the Y input during T₈ and must also be applied during bit times T₉ through T₁₆. This extension of the sign bit is a necessary adjunct to the implementation of Booth's algorithm and is a built-in feature of the '322 Shift Register. *Figure c* shows the method of using two '384s to perform a 12 x n bit multiplication. Notice that the sign of X is effectively extended by connecting X₁₁ to X₄ — X₇ of the most significant package. Whereas the 8 x 8 multiplication required 18 clock periods (m + n to form the product terms plus T₀ to clear the multiplier plus T₁₇ to recognize and store S₁₅), the arrangement of *Figure c* requires 12 + n bits to form the product terms plus the bit times to clear the multiplier and to recognize and store S_n + 11.

Fig. c A 12-Bit by N-Bit Two's Complement Multiplier

384

SYMBOL	PARAMETER	54/	74LS		CONDITIONS
		Min	Max		
los	Output Short Circuit Current	-20	-100	mA	V _{CC} = Max
lcc	Power Supply Current		155	mA	V _{CC} = Max
	ACTERISTICS: $V_{CC} = +5.0 \text{ V}, \text{ T}_{A} =$	54/	74LS		
	ACTERISTICS: V _{CC} = +5.0 V, T _A =	54/		vaveforms a	CONDITIONS
		54/	74LS		
		54 /	74LS 15 pF		
SYMBOL	PARAMETER Maximum Clock Frequency Propagation Delay	54/ CL = Min	74LS 15 pF Max 20	UNITS MHz	
SYMBOL f _{max}	PARAMETER Maximum Clock Frequency	54/ CL = Min	74LS 15 pF Max	UNITS	CONDITIONS

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/	74LS	UNITS	CONDITIONS
		Min	Max	1	CONDITIONS
t _s (H) t _s (L)	Setup Time HIGH or LOW K to CP	18 18		ns	
t _s (H) t _s (L)	Setup Time HIGH or LOW Y to CP	32 32		ns	Fig. 3-6
t _h (H) t _h (L)	Hold Time HIGH or LOW K or Y to CP	0		ns	
t _s (H) t _s (L)	Setup Time HIGH or LOW Xi to MR	13 13		ns	Fig. 3-13
t _h (H) t _h (L)	Hold Time HIGH or LOW X_i to \overline{MR}	0		ns	
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	15 15		ns	Fig. 3-8
t _w (L)	MR Pulse Width LOW	20		ns	Fig. 3-16
t _{rec}	Recovery Time MR to CP	18		ns	