nals. The device operates in a 20-bit word wide mode. All **2**6Ω series resistors in the outputs outputs can be placed into 3-STATE through use of the OE pin. These devices are ideally suited for buffered or regis-■ t_{PD} (CLK to O_n) tered 168 pin and 200 pin SDRAM DIMM memory mod-4.6 ns max for 3.0V to 3.6V V_{CC} ules 6.3 ns max for 2.3V to 2.7V V_{CC} The 74ALVC162839 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V. 9.8 ns max for 1.65V to 1.95V V_{CC} The 74ALVC162839 is also designed with 26Ω series Power-off high impedance inputs and outputs resistors in the outputs. This design reduces line noise in Supports live insertion and withdrawal (Note 1) applications such as memory address drivers, clock driv-Uses patented noise/EMI reduction circuitry ers, and bus transceivers/transmitters. ■ Latchup conforms to JEDEC JED78 The 74ALVC162839 is fabricated with an advanced CMOS technology to achieve high speed operation while maintain-■ ESD performance: ing low CMOS power dissipation. Human body model > 2000V Machine model > 200V Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver. **Ordering Code:** Order Number Package Number Package Description 74ALVC162839T MTD56 56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code Logic Symbol **Pin Descriptions** Pin Names Description OE Output Enable Input (Active LOW) REG Inputs $I_0 - I_{19}$ 04 05 06 07 08 09 010 011 012 013 014 015 016 017 018 010 O₀-O₁₉ Outputs CLK Clock Input REGE Register Enable Input

Low Voltage 20-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series Resistors in the Outputs

General Description

The ALVC162839 contains twenty non-inverting selectable buffered or registered paths. The device can be configured to operate in a registered, or flow through buffer mode by utilizing the register enable (REGE) and Clock (CLK) sig-

Features

- Compatible with PC100 and PC133 DIMM module specifications
- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs

© 2001 Fairchild Semiconductor Corporation DS500712 November 2001 **Revised November 2001**

SEMICONDUCTOR

74ALVC162839

74ALVC162839

Truth Table

	Inputs					
CLK	REGE	I _n	OE	0 _n		
↑	Н	Н	L	Н		
\uparrow	н	L	L	L		
х	L	н	L	н		
Х	L	L	L	L		
х	х	х	Н	Z		

H = Logic HIGH

L = Logic LOWX = Don't Care, but not floating

Z = High Impedance $\uparrow = LOW-to-HIGH Clock Transition$

Functional Description

The 74ALVC162839 consists of twenty selectable noninverting buffers or registers with word wide modes. Mode functionality is selected through operation of the CLK and REGE pin as shown by the truth table. When REGE is held at a logic HIGH the device operates as a 20-bit register. Data is transferred from ${\rm I_n}$ to ${\rm O_n}$ on the rising edge of the CLK input. When the REGE pin is held at a logic LOW the device operates in a flow through mode and data propagates directly from the ${\sf I}_n$ to the ${\sf O}_n$ outputs. All outputs can be 3-stated by holding the $\overline{\text{OE}}$ pin at a logic HIGH.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to 4.6V
Output Voltage (V _O) (Note 3)	-0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 4) Power Supply 0perating 1.65V to 3.6V Input Voltage 0V to V_{CC} 0utput Voltage (V_O) 0V to V_{CC} Gutput Voltage (V_O) 0V to V_{CC} 0V to V_{CC} Free Air Operating Temperature (T_A) -40° C to $+85^\circ$ C Minimum Input Edge Rate ($\Delta t/\Delta V$) $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused control inputs must be held HIGH or LOW.

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.65	1.2		
		$I_{OH} = -4 \text{ mA}$	2.3	1.9	t t	
		I _{OH} = -6 mA	2.3	1.7	t the second sec	V
			3.0	2.4		
		I _{OH} = -8 mA	2.7	2	t t	
		$I_{OH} = -12 \text{ mA}$	3.0	2	t the second sec	
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 2 mA	1.65		0.45	
		I _{OL} = 4 mA	2.3		0.4	
		I _{OL} = 6 mA	2.3		0.55	V
			3.0		0.55	
		I _{OL} = 8 mA	2.7		0.6	
		I _{OL} = 12 mA	3.0		0.8	
l _l	Input Leakage Current	$0 \le V_I \le 3.6V$	1.65 - 3.6		±5.0	μΑ
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$, $V_I = V_{IH}$ or V_{IL}	1.65 - 3.6		±10	μΑ
I _{OFF}	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	mA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
ΔI _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μΑ

DC Electrical Characteristics

www.fairchildsemi.com

Symbol		$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to +85°C, $\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$								
	Parameter	C _L = 50 pF C _L					C L =	= 30 pF		
		$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$		$V_{CC}=2.5\pm0.2V$		$V_{CC}=1.8V\pm0.15V$		Units
		Min	Max	Min	Max	Min	Max	Min	Max	L
f _{MAX}	Maximum Clock Frequency	250		200		200		100		MHz
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus (REGE = 0)	1.3	4.0	1.5	5.4	1.0	4.9	1.5	9.8	ns
t _{PHL} , t _{PLH}	Propagation Delay Clock to Bus (REGE = 1)	1.3	4.6	1.5	6.3	1.0	5.8	1.5	9.8	ns
t _{PHL} , t _{PLH}	Propagation Delay REGE to Bus	1.3	5.4	1.5	6.9	1.0	6.4	1.5	9.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.8	1.5	6.6	1.0	6.1	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.8	1.5	5.4	1.0	4.9	1.5	8.8	ns
t _S	Setup Time	1.0		1.0		1.0		2.5		ns
t _H	Hold Time	0.7		0.7		0.7		1.0		ns
t _W	Pulse Width	1.5		1.5		1.5		4.0		ns
CIN	Input Capacitance			$V_I = 0V \text{ or } V$				3.3	6	pF
C _{OUT}	Output Capacitance			V _I = 0V or V _{CC}				3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs	Enabled	f = 10 MHz	, C _L = 0 p⊦		-	3.3 2.5	20 20	pF
	1									

74ALVC162839

www.fairchildsemi.com

