INTEGRATED CIRCUITS

Product specification

1999 Mar 23

IC24 Data Handbook

74ALVT16731

FEATURES

- 5V I/O Compatible
- 3-State outputs
- Output capability: +64 mA/-32 mA
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up reset
- Power-up 3-State
- Positive edge triggered registers
- Latch-up protection exceeds 500 mA per JEDEC JC40.2 Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per machine model
- Bus hold data inputs eliminate the need for external pull-up resistors to hold unused inputs

QUICK REFERENCE DATA

DESCRIPTION

The 74ALVT16731 is a high-performance BiCMOS product designed for V_{CC} operation at 2.5V to 3.3V with I/O compatibility up to 5V.

This device is a 1-to-4 address register/driver featuring non-inverting 3-State outputs. The state of the outputs are controlled by two enable inputs (OE1 and OE2). Each enable input controls the state of two of the four common outputs for each input. When an OEn input is a logic High, the respective outputs will be in the high impedance state. When an OEn input is a logic Low, the respective outputs are active. The device can be configured for a transparent mode from input to output or a register mode by the SEL input. When SEL is a logic High the device is configured for register mode and when SEL is a logic Low it is configured for register mode. While in the register mode the output follows the input on the rising edge of the CLK input. The function of the data registers is not effected by either SEL or OEn.

SYMBOL	PARAMETER	CONDITIONS	TYPI	UNIT	
	PARAMETER	$T_{amb} = 25^{\circ}C; GND = 0V$	2.5V	3.3V	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nYx	C _L = 50pF	3.1 2.3	2.1 1.8	ns
C _{IN}	Input capacitance	$V_{I} = 0V \text{ or } V_{CC}$	4	4	pF
C _{OUT}	Output capacitance	Outputs disabled; $V_0 = 0V$ or V_{CC}	9	9	pF
I _{CCZ}	Total supply current	Outputs disabled	40	70	μΑ

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	–40°C to +85°C	74ALVT16731 DL	AV16731 DL	SOT371-1
56-Pin Plastic TSSOP Type II	–40°C to +85°C	74ALVT16731 DGG	AV16731 DGG	SOT364-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 4, 19, 25, 28, 32, 38, 41, 47, 53	GND	Ground
5, 6, 23, 24, 30, 31, 36, 37, 42, 43, 48, 49, 54, 55	1Y _n , 2Y _n	Output, controlled by OE1
2, 3, 20, 21, 26, 27, 33, 34, 39, 40, 45, 46, 51, 52	3Y _n ,4Y _n	Output, controlled by OE2
7, 22, 29, 35, 44, 50, 56	V _{CC}	Positive power supply
8, 9, 10, 15, 16, 17, 18	A _n	Data inputs
14	SEL	Select input, controls mode of device
11	CLK	Clock input
12, 13	OE _n	Output enable

74ALVT16731

PIN CONFIGURATION

FUNCTION TABLE

	INPUTS				
OE	SEL	CLK	А	Y	
Н	Х	Х	Х	Z	
L	Н	Х	L	L	
L	Н	Х	Н	Н	
L	Ĺ	Ť	Ĺ	Ĺ	
L	L	Ť	Н	Н	

LOGIC DIAGRAM

74ALVT16731

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage ³		-0.5 to +7.0	V
I _{ОК}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V
1	DC output current	Output in Low state	128	mA
I _{OUT} DC output		Output in High state	-64	
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	2.5V RAN	GE LIMITS	3.3V RAN	UNIT	
STMBOL		MIN	MAX	MIN	MAX	UNIT
V _{CC}	DC supply voltage	2.3	2.7	3.0	3.6	V
VI	Input voltage	0	5.5	0	5.5	V
V _{IH}	High-level input voltage	1.7		2.0		V
V _{IL}	Input voltage		0.7		0.8	V
I _{ОН}	High-level output current		-8		-32	mA
le.	Low-level output current		8		32	mA
IOL	Low-level output current; current duty cycle \leq 50%; f \geq 1kHz		24		64	IIIA
$\Delta t/\Delta v$	Input transition rise or fall rate; Outputs enabled		10		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	-40	+85	°C

74ALVT16731

DC ELECTRICAL CHARACTERISTICS (3.3V \pm 0.3V RANGE)

					LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	TEST CONDITIONS		Temp = -40°C to +85°C		
				MIN	TYP ¹	MAX	
V _{IK}	Input clamp voltage	$V_{CC} = 3.0V; I_{IK} = -18mA$			-0.85	-1.2	V
\/	High-level output voltage	$V_{CC} = 3.0$ to 3.6V; $I_{OH} = -100\mu A$		V _{CC} -0.2	V _{CC}		v
V _{OH}	High-level output voltage	$V_{CC} = 3.0V; I_{OH} = -32mA$		2.0	2.3		Ň
		V _{CC} = 3.0V; I _{OL} = 100μA			0.07	0.2	
Ve	Low-level output voltage	V _{CC} = 3.0V; I _{OL} = 16mA			0.25	0.4	v
V _{OL}	Low-level output voltage	V _{CC} = 3.0V; I _{OL} = 32mA			0.3	0.5	Ň
		V _{CC} = 3.0V; I _{OL} = 64mA			0.4	0.55	
V _{RST}	Power-up output low voltage ⁶	$V_{CC} = 3.6V; I_{O} = 1mA; V_{I} = V_{CC} \text{ or GND}$				0.55	V
		$V_{CC} = 3.6V; V_1 = V_{CC} \text{ or } GND$	Control pins		0.1	±1	
		V _{CC} = 0 or 3.6V; V _I = 5.5V			0.1	10	μΑ
łį	Input leakage current	$V_{CC} = 3.6V; V_{I} = V_{CC}$	Data pins ⁴		0.5	1	
		$V_{CC} = 3.6V; V_{I} = 0$	Data pins		0.1	-5	
I _{OFF}	Off current	$V_{CC} = 0V; V_1 \text{ or } V_0 = 0 \text{ to } 4.5V$			0.1	±100	μA
	Bus Hold current	$V_{CC} = 3V; V_1 = 0.8V$		75	130		
I _{HOLD}	Data inputs ⁷	$V_{CC} = 3V; V_{I} = 2.0V$		-75	-225		μA
		$V_{CC} = 0V$ to 3.6V; $V_{CC} = 3.6V$		±500			
I_{EX}	Current into an output in the High state when $V_O > V_{CC}$	$V_{O} = 5.5$ V; $V_{CC} = 3.0$ V			10	125	μΑ
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2$ V; $V_{O} = 0.5$ V to V_{CC} ; $V_{I} = $ GND OE/OE = Don't care	or V _{CC}		1	±100	μΑ
I _{OZH}	3-State output High current	$V_{CC} = 3.6V; V_O = 3.0V; V_I = V_{IL} \text{ or } V_{IH}$			0.5	5	μA
I _{OZL}	3-State output Low current	V_{CC} = 3.6V; V_{O} = 0.5V; V_{I} = V_{IL} or V_{IH}			0.5	-5	μA
ICCH		V_{CC} = 3.6V; Outputs High, V_{I} = GND or V	, -		0.05	0.1	
I _{CCL}	Quiescent supply current	V_{CC} = 3.6V; Outputs Low, V_{I} = GND or V_{C}	, -		7.0	9.0	mA
I _{CCZ}		V_{CC} = 3.6V; Outputs Disabled; V_{I} = GND	, -		0.06	0.1	
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} -0.6V Other inputs at V_{CC} or GND	,		0.04	0.4	mA

NOTES:

NOTES: 1. All typical values are at $V_{CC} = 3.3V$ and $T_{amb} = 25^{\circ}C$. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND 3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From $V_{CC} = 1.2V$ to $V_{CC} = 3.3V \pm 0.3V$ a transition time of 100µsec is permitted. This parameter is valid for $T_{amb} = 25^{\circ}C$ only. 4. Unused pins at V_{CC} or GND. 5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground. 6. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power. 7. This is the bus hold overdrive current required to force the input to the opposite logic state.

74ALVT16731

AC CHARACTERISTICS (3.3V ±0.3V RANGE)

GND = 0V; $t_R = t_F = 2.5$ ns; $C_L = 50$ pF; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}$ C to +85°C.

	PARAMETER					
SYMBOL		WAVEFORM	Vc	$c = 3.3V \pm 0$.3V	UNIT
			MIN	TYP ¹	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nYx	1	1.0 1.0	2.1 1.8	4.0 3.4	ns
t _{PLH} t _{PHL}	Propagation delay CLK to nYx	3	1.5 1.5	2.8 2.7	4.7 4.4	ns
t _{PLH} t _{PHL}	Propagation delay SEL to nYx	1	1.5 1.0	3.5 2.7	5.4 4.4	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.0 1.0	3.3 2.3	5.2 4.1	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.5 1.5	3.7 3.0	5.6 4.5	ns

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25° C.

AC SETUP REQUIREMENTS (3.3V ±0.3V RANGE)

GND = 0V; $t_R = t_F = 2.5$ ns; $C_L = 50$ pF, $R_L = 500\Omega$; $T_{amb} = -40$ °C to +85°C.

			LIM			
SYMBOL	PARAMETER	TER WAVEFORM		V _{CC} = 3.3V ±0.3V		
			MIN	TYP ¹		
ts(H) ts(L)	Setup time, High or Low Ax to CLK	4	1.5 1.5	1.0 1.0	ns	
th(H) th(L)	Hold time, High or Low Ax to CLK	4	0 0	-0.9 -0.9	ns	
tw(H) tw(L)	Pulse width, High or Low CLK	3	1.5 1.5		ns	

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

74ALVT16731

DC ELECTRICAL CHARACTERISTICS (2.5V \pm 0.2V RANGE)

					LIMITS		
SYMBOL	L PARAMETER TEST CONDITIONS		Temp =	-40°C to	-40°C to +85°C		
				MIN	TYP ¹	MAX	
VIK	Input clamp voltage	$V_{CC} = 2.3V; I_{IK} = -18mA$			-0.85	-1.2	V
V _{OH}	High-level output voltage	$V_{CC} = 2.3$ to 3.6V; $I_{OH} = -100\mu A$		V _{CC} -0.2	V _{CC}		v
VOH	riigh-level ouput voitage	$V_{CC} = 2.3V; I_{OH} = -8mA$		1.8	2.1		v
		$V_{CC} = 2.3V; I_{OL} = 100\mu A$			0.07	0.2	
V _{OL}	Low-level output voltage	$V_{CC} = 2.3V; I_{OL} = 24mA$			0.3	0.5	V
		$V_{CC} = 2.3V; I_{OL} = 8mA$				0.4	
V _{RST}	Power-up output low voltage ⁷	V_{CC} = 2.7V; I_{O} = 1mA; V_{I} = V_{CC} or GND				0.55	V
		$V_{CC} = 2.7V; V_I = V_{CC}$ or GND	Control pins		0.1	±1	
L.	Input leakage current	$V_{CC} = 0 \text{ or } 2.7 \text{V}; \text{ V}_{\text{I}} = 5.5 \text{V}$			0.1	10	μA
łı	input leakage current	$V_{CC} = 2.7V; V_I = V_{CC}$	Data pins ⁴		0.1	10	
		$V_{CC} = 2.7V; V_{I} = 0$	Data pins		0.1	-5	
I _{OFF}	Off current	$V_{CC} = 0V; V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5V$			0.1	±100	μA
I _{HOLD}	Bus Hold current	$V_{CC} = 2.3V; V_{I} = 0.7V$			90		μΑ
	Data inputs ⁶	V _{CC} = 2.3V; V _I = 1.7V			-10		μA
I_{EX}	Current into an output in the High state when $V_O > V_{CC}$	V _O = 5.5V; V _{CC} = 2.3V			10	125	μA
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2$ V; $V_{O} = 0.5$ V to V_{CC} ; $V_{I} = GNE$ OE/OE = Don't care) or V _{CC}		1	±100	μA
I _{OZH}	3-State output High current	$V_{CC} = 2.7V; V_{O} = 2.3V; V_{I} = V_{IL} \text{ or } V_{IH}$			0.5	5	μA
I _{OZL}	3-State output Low current	$V_{CC} = 2.7V; V_{O} = 0.5V; V_{I} = V_{IL} \text{ or } V_{IH}$			0.5	-5	μA
I _{CCH}		V_{CC} = 2.7V; Outputs High, V_{I} = GND or V	$V_{\rm CC}, I_{\rm O} = 0$		0.04	0.1	
I _{CCL}	Quiescent supply current	V_{CC} = 2.7V; Outputs Low, V_{I} = GND or V	$I_{\rm CC, I_{\rm O}=0}$		5.0	7.0	mA
I _{CCZ}	1	V_{CC} = 2.7V; Outputs Disabled; V_{I} = GND) or $V_{CC, I_{O}} = 0^5$		0.04	0.1	
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 2.3V to 2.7V; One input at V_{CC} -0. Other inputs at V_{CC} or GND	6V,		0.04	0.4	mA

NOTES:

1. All typical values are at $V_{CC} = 2.5V$ and $T_{amb} = 25^{\circ}C$. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND 3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From $V_{CC} = 1.2V$ to $V_{CC} = 2.5V \pm 0.2V$ a transition time of 100 μ sec is permitted. This parameter is valid for T_{amb} = 25°C only.

4. Unused pins at V_{CC} or GND.

5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground.

6. Not guaranteed.

7. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

AC CHARACTERISTICS (2.5V \pm 0.2V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

	PARAMETER					
SYMBOL		WAVEFORM	V _C	$c = 2.5V \pm 0.00$.2V	UNIT
			MIN	TYP ¹	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nYx	1	1.0 1.0	3.1 2.3	5.5 4.2	ns
t _{PLH} t _{PHL}	Propagation delay CLK to nYx	3	2.2 2.2	4.0 3.5	6.6 6.0	ns
t _{PLH} t _{PHL}	Propagation delay SEL to nYx	1	1.5 1.0	4.8 3.3	7.9 6.1	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	2.0 2.0	4.7 3.2	7.7 5.6	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.5 1.5	4.5 3.7	6.9 5.9	ns

NOTE:

74ALVT16731

1. All typical values are at $V_{CC} = 2.5V$ and $T_{amb} = 25^{\circ}C$.

AC SETUP REQUIREMENTS (2.5V ± 0.2V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$, $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

			LIM	ITS	
SYMBOL	PARAMETER	WAVEFORM	V _{CC} = 2.5	UNIT	
			MIN	TYP ¹	
ts(H) ts(L)	Setup time, High or Low Ax to CLK	4	2.4 2.3	0.9 0.8	ns
th(H) th(L)	Hold time, High or Low Ax to CLK	4	0 0	-0.7 -0.6	ns
tw(H) tw(L)	Pulse width, High or Low CLK	3	1.5 1.5		ns

NOTE:

1. All typical values are at V_{CC} = 2.5V and T_{amb} = 25°C.

AC WAVEFORMS

NOTES:

- 1. $V_M = 1.5V$ at $V_{CC} \ge 3.0V$, $V_M = V_{CC}/2$ at $V_{CC} \le 2.7V$ 2. $V_X = V_{OL} + 0.3V$ at $V_{CC} \ge 3.0V$, $V_X = V_{OL} + 0.150V$ at $V_{CC} \le 2.7V$ 3. $V_Y = V_{OH} 0.3V$ at $V_{CC} \ge 3.0V$, $V_Y = V_{OH} 0.150V$ at $V_{CC} \le 2.7V$

Waveform 1. Input (Ax) to Output (nYx) Propagation Delay, transparent mode. SEL to Output (nYx) Propagation Delay

Waveform 2. 3-State Output Enable and Disable Times

Waveform 3. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 4. Data Setup and Hold Times

74ALVT16731

TEST CIRCUIT AND WAVEFORMS

74ALVT16731

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT371-1		MO-118AB				-93-11-02 95-02-04

74ALVT16731

74ALVT16731

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.