INTEGRATED CIRCUITS

Preliminary specification Replaces datasheet 74AVC16834/74AVCH16834 dated 1998 Dec 11 1999 Jul 23

74AVC16834

FEATURES

- Wide supply voltage range of 1.2 V to 3.6 V
- Complies with JEDEC standard no. 8-1A/5/7.
- CMOS low power consumption
- Input/output tolerant up to 3.6 V
- DCO (Dynamic Controlled Output) circuit dynamically changes output impedance, resulting in noise reduction without speed degradation
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Power off disables 74AVC16834 outputs, permitting Live Insertion

DESCRIPTION

The 74AVC16834 is a 18-bit universal bus driver. Data flow is controlled by output enable (OE), latch enable (LE) and clock inputs (CP).

This product is designed to have an extremely fast propagation delay and a minimum amount of power consumption.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor (Live Insertion).

A Dynamic Controlled Output (DCO) circuitry is implemented to support termination line drive during transient. See the graphs on page 8 for typical curves.

PIN CONFIGURATION

NC	1 56 GND
NC	2 55 NC
Y ₀	3 54 A ₀
GND	4 53 GND
Y ₁	5 52 A ₁
Y ₂	6 51 A ₂
V _{CC}	7 50 V _{CC}
Y ₃	8 49 A ₃
Y ₄	9 48 A ₄
Y ₅	10 47 A ₅
GND	11 46 GND
Y ₆	12 45 A ₆
Y ₇	13 44 A ₇
Y ₈	14 43 A ₈
Y ₉	15 42 A ₉
Y ₁₀	16 41 A ₁₀
Y ₁₁	17 40 A ₁₁
GND	18 39 GND
Y ₁₂	19 38 A ₁₂
Y ₁₃	20 37 A ₁₃
Y ₁₄	21 36 A ₁₄
V _{CC}	22 35 V _{CC}
Y ₁₅	23 34 A ₁₅
Y ₁₆	24 33 A ₁₆
GND	25 32 GND
Y ₁₇	26 31 A ₁₇
OE	27 30 CP
LE	28 29 GND
	SH00156

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.0$ ns; $C_L = 30$ pF.

SYMBOL	PARAMETER	CONDITION	CONDITIONS		
t _{PHL} /t _{PLH}	Propagation delay An to Yn	V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC} = 3.3 V		2.6 2.0 1.7	ns
t _{PHL} /t _{PLH}	Propagation delay LE to Yn; CP to Yn	V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC} = 3.3 V		2.9 2.3 1.9	ns
Cl	Input capacitance			5.0	pF
C _{PD}	Power dissipation capacitance per buffer	$V_1 = GND$ to V_{CC}^1	Outputs enabled	25	pF
	r ower dissipation capacitance per buller		Output disabled	6	Ы

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where: $f_{i} = \text{input frequency in MHz}; C_{L} = \text{output load capacitance in pF};$ $f_{o} = \text{output frequency in MHz}; V_{CC} = \text{supply voltage in V}; \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) = \text{sum of outputs}.$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DRAWING NUMBER
56-Pin Plastic Thin Shrink Small Outline (TSSOP) Type II	–40°C to +85°C	74AVC16834 DGG	SOT364-1

74AVC16834

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 2, 55	NC	No connection
3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26	Y_0 to Y_{17}	Data outputs
4, 11, 18, 25, 32, 39, 46, 53, 56	GND	Ground (0 V)
7, 22, 35, 50	V _{CC}	Positive supply voltage
27	ŌĒ	Output enable input (active LOW)
28	LE	Latch enable input (active LOW)
30	СР	Clock input
54, 52, 51, 49, 48, 47, 45, 44, 43, 42, 41, 40, 38, 37, 36, 34, 33, 31	A_0 to A_{17}	Data inputs

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

	INPUTS							
OE	LE	СР	Α	OUTPUTS				
Н	Х	Х	Х	Z				
L	L	Х	L	L				
L	L	Х	Н	Н				
L	Н	↑	L	L				
L	Н	↑	Н	Н				
L	Н	Н	Х	Y ₀ 1				
L	Н	L	Х	Y ₀ ²				

H HIGH voltage level =

LOW voltage level L =

Don't care =

X Z ↑ High impedance "off" state =

LOW-to-HIGH level transition =

NOTES:

- Output level before the indicated steady-state input conditions 1. were established, provided that CP is high before LE goes low.
- Output level before the indicated steady-state input conditions 2. were established.

74AVC16834

18-bit registered driver with inverted register enable (3-State)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{CC}	DC supply voltage (according to JEDEC Low Voltage Standards)		1.65 2.3 3.0	1.95 2.7 3.6	V
	DC supply voltage (for low voltage applications)		1.2	3.6	
VI	DC Input voltage range		0	3.6	V
	DC output voltage range; output 3-State		0	3.6	
Vo	DC output voltage range; output HIGH or LOW state		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	V_{CC} = 1.65 to 2.3 V V_{CC} = 2.3 to 3.0 V V_{CC} = 3.0 to 3.6 V	0 0 0	30 20 10	ns/V

74AVC16834

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage	For all inputs ¹	-0.5 to 4.6	V
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	±50	mA
Vo	DC output voltage; output 3-State	Note 1	-0.5 to 4.6	V
V _O	DC output voltage; output HIGH or LOW state	Note 1	–0.5 to V _{CC} +0.5	V
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package –plastic thin-medium-shrink (TSSOP)	For temperature range: –40 to +125 °C above +55°C derate linearly with 8 mW/K	600	mW

NOTE:

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp	= -40°C to +8	5°C	UNIT
			MIN	TYP ¹	MAX	1
		V _{CC} = 1.2 V	V _{CC}	-	-	
VIH	HIGH level Input voltage	V _{CC} = 1.65 to 1.95 V	0.65V _{CC}	0.9	-	V
VIH	n i Gi never input voltage	V _{CC} = 2.3 to 2.7 V	1.7	1.2	-	1 `
		V _{CC} = 3.0 to 3.6 V	2.0	1.5	-	
		V _{CC} = 1.2 V	-	-	GND	
VIL	LOW level Input voltage	V _{CC} = 1.65 to 1.95 V	-	0.9	0.35V _{CC}	V
۷IL	Low level input voltage	$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$	-	1.2	0.7] `
		V _{CC} = 3.0 to 3.6 V	-	1.5	0.8	1
		V_{CC} = 1.65 to 3.6V; V_{I} = V_{IH} or $V_{IL};$ I_{O} = $-100~\mu A$	V _{CC} -0.20	V _{CC}	-	
V _{OH}	HIGH level output voltage	V_{CC} = 1.65 V; V_I = V_{IH} or V_{IL} ; I_O = -4 mA	V _{CC} -0.45	V _{CC} -0.10	-	V
		V_{CC} = 2.3 V; V_I = V_{IH} or V_{IL} ; I_O = -8 mA	V _{CC} _0.55	V _{CC} _0.28	-	1
		V_{CC} = 3.0 V; V_I = V_{IH} or V_{IL} ; I_O = -12 mA	V _{CC} -0.70	$V_{CC} = 0.32$	-	1
		V_{CC} = 1.65 to 3.6 V; V_{I} = V_{IH} or $V_{IL};$ I_{O} = 100 μA	-	GND	0.20	
V _{OL}	LOW level output voltage	V_{CC} = 1.65 V; V_I = V_{IH} or V_{IL} ; I_O = 4 mA	-	0.10	0.45	V
		V_{CC} = 2.3 V; V_I = V_{IH} or V_{IL} ; I_O = 8 mA	-	0.26	0.55	1
		V_{CC} = 3.0 V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 12 mA	-	0.36	0.70	1
I _I	Input leakage current	V_{CC} = 1.65 to 3.6 V; V _I = V _{CC} or GND	-	0.1	2.5	μA
I _{OFF}	3-State output OFF-state current	$V_{CC} = 0 \text{ V}; \text{ V}_{I} \text{ or } \text{ V}_{O} = 3.6 \text{ V}$	-	0.1	±10	μΑ
I _{IHZ} /I _{ILZ}	3-State output OFF-state current	V_{CC} = 1.65 to 3.6 V; V_{I} = V_{CC} or GND	-	0.1	12.5	μA
1	3-State output OFF-state current	V_{CC} = 1.65 to 2.7 V; V_{I} = V_{IH} or $V_{IL};$ V_{O} = V_{CC} or GND	-	0.1	5	μA
I _{OZ}		V_{CC} = 3.0 to 3.6 V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND	_	0.1	10	μΛ
lcc	Quiescent supply current	V_{CC} = 1.65 to 2.7 V; V_I = V_{CC} or GND; I_O = 0	-	0.1	20	μA
1CC	Quescent supply current	V_{CC} = 3.0 to 3.6 V; V_I = V_{CC} or GND; I_O = 0	-	0.2	40	

NOTES:

1. All typical values are at $T_{amb} = 25^{\circ}C$.

74AVC16834

Preliminary specification

AC CHARACTERISTICS

GND = 0 V; $t_r = t_f \le 2.0$ ns; $C_L = 30$ pF

			LIMITS										
SYMBOL	PARAMETER	WAVEFORM	Vcc	= 3.3 ±	0.3 V	V _{CC}	= 2.5 ± 0).2 V	V _{CC}	= 1.8 ± (0.15 V	V _{CC} = 1.2 V	UNIT
			MIN	TYP ¹	MAX	MIN	TYP ¹	MAX	MIN	TYP ¹	MAX	TYP	
	Propagation delay An to Yn	1, 7	0.7	1.7	2.5	0.8	2.0	3.0	1.0	2.6	4.5	5.2	
t _{PHL} /t _{PLH}	Propagation delay LE to Yn	2, 7	0.7	1.9	2.9	0.8	2.3	3.5	1.0	2.9	5.3	5.8	ns
	Propagation delay CP to Yn	3, 7	0.7	1.7	2.5	0.8	2.0	3.0	1.0	2.6	4.5	5.2	
t _{PZH} /t _{PZL}	3-State output enable time $\overline{\text{OE}}$ to Yn	6, 7	1.0	2.3	4.0	1.0	2.5	4.5	1.5	3.0	6.5	5.5	ns
t _{PHZ} /t _{PLZ}	3-State output disable time $\overline{\text{OE}}$ to Yn	6, 7	1.0	2.3	3.5	1.0	2.2	4.0	1.5	3.5	6.5	5.5	ns
t _W	CP pulse width HIGH or LOW	3, 7	1.0	-	-	1.2	-	-	2.0	-	-	-	ns
	LE pulse width HIGH	2, 7	1.0	-	-	1.2	-	-	2.0	-	-	-	
+	Set-up time An to CP	5, 7	0.3	-	-	0.4	-	-	0.5	-	-	-	
t _{SU}	Set-up time An to LE	4, 7	0.3	-	-	0.4	-	-	0.5	-	-	-	ns
	Hold time An to CP	5, 7	0.3	-	-	0.4	-	-	0.5	-	-		
t _h	Hold time An to LE	4, 7	0.3	-	-	0.4	-	-	0.5	-	-		ns
F _{max}	Maximum clock pulse frequency	3, 7	500	-	-	400	-	_	250	_	_		MHz

NOTES:

1. All typical values are measured at T_{amb} = 25°C and at V_{CC} = 1.8 V, 2.5 V, 3.3 V.

AC WAVEFORMS FOR V_{CC} = 3.0 V TO 3.6 V RANGE

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load. $V_I = V_{CC}$

AC WAVEFORMS FOR V_{CC} = 2.3 V TO 2.7 V AND V_{CC} < 2.3 V RANGE

 $\begin{array}{l} V_M = 0.5 \; V_{CC} \\ V_X = V_{OL} + 0.15 \; V \\ V_Y = V_{OH} - 0.15 \; V \\ V_{OL} \; \text{and} \; V_{OH} \; \text{are the typical output voltage drop that occur with the output load.} \end{array}$

 $V_I = V_{CC}$

Waveform 1. Input (An) to output (Yn) propagation delay

Waveform 2. Latch enable input (LE) pulse width, the latch enable input to output (Yn) propagation delays.

74AVC16834

AC WAVEFORMS FOR V_{CC} = 3.0 V TO 3.6 V RANGE (Continued)

 $\begin{array}{l} V_M = 0.5 \; V_{CC} \\ V_X = V_{OL} + 0.300 \; V \\ V_Y = V_{OH} - 0.300 \; V \\ V_{OL} \; \text{and} \; V_{OH} \; \text{are the typical output voltage drop that occur with the output load.} \\ V_I = V_{CC} \end{array}$

AC WAVEFORMS FOR V_{CC} = 2.3 V TO 2.7 V AND V_{CC} < 2.3 V RANGE (Continued)

 V_M = 0.5 V_{CC} V_X = V_{OL} + 0.15 V V_Y = V_{OH} – 0.15 V V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

 $V_{I} = V_{CC}$

Waveform 3. The clock (CP) to Yn propagation delays, the clock pulse width and the maximum clock frequency.

Waveform 4. Data set-up and hold times for the An input to the LE input

Waveform 6. 3-state enable and disable times

74AVC16834

TEST CIRCUIT

TEST S₁ VI R_L v_{cc} < 2.3 V 1000 Ω t_{PLH}/t_{PHL} Open V_{CC} t_{PLZ}/t_{PZL} 2.3–2.7 V 500 Ω V_{CC} $2 * V_{CC}$ t_{PHZ}/t_{PZH} GND 3.0 V 500 Ω V_{CC} SV01018

Waveform 7. Load circuitry for switching times

GRAPHS

74AVC16834

74AVC16834

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 07-99

9397-750-06249

Let's make things better.

PHILIPS