National Semiconductor

54FCT/74FCT374 Octal D Flip-Flop with TRI-STATE® Outputs

General Description

The 'FCT374 is a high-speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (OE) are common to all flip-flops.

FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

- NSC 54FCT/74FCT374 is pin and functionally equivalent to IDT 54FCT/74FCT374
- Controlled output edge rates and undershoot for improved noise immunity. Internal split ground for improved noise immunity
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- I_{OL} = 48 mA (commercial) and 32 mA (military)
- CMOS power levels
- **ESD** immunity \geq 4kV typ
- Military product compliant to MIL-STD 883 and standard military drawing #5962-87628

Ordering Code: See Section 8

Logic Symbols

Pin Names	Description
D ₀ -D ₇	Data Inputs
CP	Clock Pulse Input
OE	TRI-STATE Output Enable Input
00-07	TRI-STATE Outputs

Connection Diagrams

Functional Description

The 'FCT374 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flipflops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops.

Truth Table

	Outputs		
Dn	СР	ŌĒ	On
н	~	L	н
L	5	L .	L
Х	x	н	Z

H = HIGH Voltage Level ۰.

= LOW Voltage Level

= Immaterial

Z = High Impedance

= LOW-to-HIGH Transition

374

Absolute Maximum Ratings (Note 1)

If MIIItary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage	
with Respect to GND (V _{TERM}) 54FCT	-0.5V to 7.0V
74FCT	-0.5V to 7.0V
Temperature under Bias (TBIAS)	
74FCT	-55°C to +125°C
54FCT	-65°C to +135°C
Storage Temperature (TSTG)	
74FCT	-55°C to +125°C
54FCT	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Conditions

Supply Voltage (V _{CC})	
54FCT	4.5V to 5.5V
74FCT	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A)	
54FCT	-55°C to +125°C
74FCT	0°C to +70°C
Junction Temperature (TJ)	
CDIP	175°C
PDIP	140°C

DC Characteristics for 'FCT Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V \pm 10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} - 0.2V.

Symbol	Parameter	54FCT/74FCT			Units	Conditions	
Symbol	raiametei	Min	Тур	Max	Unito		
V _{IH}	Minimum High Level Input Voltage	2.0			v		
VIL	Maximum Low Level Input Voltage			0.8	v		
JIH	Input High Current			5.0 5.0	μA	V _{CC} = Max	$V_{I} = V_{CC}$ $V_{I} = 2.7V$ (Note 2)
կլ	Input Low Current			-5.0 -5.0	μA	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND
loz	Maximum TRI-STATE Current			10.0 10.0 10.0 10.0	μΑ	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V \text{ (Note 2)}$ $V_{O} = 0.5V \text{ (Note 2)}$ $V_{O} = \text{GND}$
VIK	Clamp Diode Voltage		-0.7	-1.2	V	$\dot{V}_{CC} = Min; I_N = -18 \text{ mA}$	
los	Short Circuit Current	-60	- 120		mA	$V_{CC} = Max (Note 1); V_O = GND$	
V _{OH}	Minimum High Level Output Voltage	2.8 V _{HC} 2.4 2.4	3.0 V _{CC} 4.3 4.3		v	V _{CC} = Min	V or V_{HC} ; $I_{OH} = -32 \mu A$ $I_{OH} = -300 \mu A$ $I_{OH} = -12 mA$ (Mil) $I_{OH} = -15 mA$ (Com
V _{OL}	Maximum Low Level Output Voltage		GND GND 0.3 0.3	0.2 0.2 0.50 0.50	v	$\label{eq:V_CC} \begin{split} V_{CC} &= 3V; V_{IN} = 0.2\\ V_{CC}^{*} &= Min\\ V_{IN} &= V_{IH} \text{ or } V_{IL} \end{split}$	$\frac{V \text{ or } V_{HC}; I_{OL} = 300 \ \mu\text{A}}{I_{OL} = 300 \ \mu\text{A}}$ $I_{OL} = 32 \ \text{mA} (Mil)$ $I_{OL} = 48 \ \text{mA} (Com)$
ICC	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:V_CC} \begin{split} V_{CC} &= Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2 \\ f_I &= 0 \end{split}$	v
ΔI _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)	

DC Characteristics for 'FCT Family Devices (Continued)

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; Mil: V_{CC} = 5.0V \pm 10%, T_A = -55°C to +125°C, V_{HC} = V_{CC} - 0.2V.

Symbol	Symbol Parameter		74FCT		Units	Conditions		
		Min Typ Max		Units	conditions			
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.25	mA/MHz	V _{CC} = Max Outputs Open One Input Toggling 50% Duty Cycle	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
lc	Total Power Supply Current (Note 6)		1.5	4.0		$V_{CC} = Max$ Outputs Open $f_{CP} = 10 \text{ MHz}$ $\overline{OE} = \text{GND}$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
		ļ	1.8	6.0	mA	f _I = 5 MHz One Bit Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	
			3.0	7.8		(Note 5) $V_{CC} = Max$ Outputs Open $f_{CP} = 10 \text{ MHz}$ $\overline{OE} = GND$	$V_{IN} \ge V_{HC}$ $V_{IN} \le 0.2V$	
			5.0	16.8		f _I = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	$V_{IN} = 3.4V$ $V_{IN} = GND$	

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input (V_{IN} = 3.4V); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$

I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

D_H = Duty Cycle for TTL Inputs High

NT = Number of Inputs at DH

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

 f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_I = Input Frequency

N_I = Number of Inputs at f_I

All currents are in milliamps and all frequencies are in megahertz.

Note 7: For 54FCT, $I_{CCD} = 0.40 \text{ mA/MHz}$.

Refer to applicable standard military drawing or NSC Table I for test conditions and I_C/I_{CC} limits.

374

		54FCT/74FCT	74FCT	$54FCT$ $T_A, V_{CC} = Mii$ $R_L = 500\Omega$ $C_L = 50 \text{ pF}$		Units	Fig. No.	
Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = 5.0V$	$T_{A}, V_{CC} = Com$ $R_{L} = 500\Omega$ $C_{L} = 50 \text{ pF}$					
		Тур	Min (Note 1)	Max	Min	Max		
t _{PLH} t _{PHL}	Propagation Delay C _P to O _n	6.6	2.0	10.0	2.0	11.0	ns	2-8
t _{PZH} t _{PZL}	Output Enable Time	9.0	1.5	12.5	1.5	14.0	ns	2-11
tpHZ t _{PLZ}	Output Disable Time	6.0	1.5	8.0	1.5	8.0	ns	2-11
tsu	Set Up Time High or Low D _n to C _P	1.0	2.0		2.5		ns	2-10
t _H	Hold Time High or Low D _n to C _P	0.5	2.0		2.5		ns	2-10
t _w	C _P Pulse Width High or Low	4.0	7.0		7.0		ns	2-9

Note 1: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance $T_A = +25^{\circ}C$, f = 1.0 MHz

Symbol	Parameter (Note 1)	Тур	Max	Unit	Condition
C _{IN}	Input Capacitance	6	10	pF	$V_{IN} = 0V$
COUT	Output Capacitance	8	12	pF	V _{OUT} = 0V

Note 1: This parameter is measured at characterization but not tested.

COUT for 74FCT only.

374