

54FCT/74FCT564 Octal D Flip-Flop with TRI-STATE® Outputs

General Description

The 'FCT564 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

FACT FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCT features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

The 'FCT564 device is functionally identical to the 'FCT574, but with inverted outputs.

Ordering Code: See Section 8

Logic Symbols

Features

- NSC 54FCT/74FCT564 is pin and functionally equivalent to IDT 54FCT/74FCT564
- TRI-STATE outputs for bus-oriented applications
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- I_{OL} = 48 mA (com), 32 mA (mil)
- CMOS power levels
- ESD immunity ≥ 4 kV typ
- Military product compliant to MIL-STD 883

Connection Diagrams

			_	
OE -	EN			
CP —	> C1			
2	7		Ľ	-
D ₀	1D	Þ	V	- ōo
D1				- ō1
D2				- 0 ₂
D3 -	2			- ō3
D4 -			1	<u> </u>
D5 -				- ō ₅
D6 -				- 0 ₆
D7 -				- ō7
				TL/F/10671-2

IEEE/IEC

Pin Names	Description
D0-D7	Data Inputs
CP	Clock Pulse Input
OE	TRI-STATE Output Enable Input
$\overline{O}_0 - \overline{O}_7$	TRI-STATE Outputs

564

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with respect to GND (VTERM)

54FCT	-0.5V to 7.0V
74FCT	-0.5 to 7.0V
Temperature Under Bias (T _{BIAS})	
74FCT	-55°C to +125°C
54FCT	-65°C to +135°C
Storage Temperature (T _{STG})	
74FCT	- 55°C to + 125°C
54FCT	-65°C to +150°C
Power Dissipation (PT)	0.5W
DC Output Current (I _{OUT})	120 mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
54FCT	4.5V to 5.5V
74FCT	4.75V to 5.25V
Input Voltage	0V to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A)	
54FCT	-55°C to +125°C
74FCT	0°C to + 70°C
Junction Temperature (T,)	
CDIP	175°C
PDIP	140°C

564

DC Characteristics for 'FCT Family Devices

Typical values are at V_{CC} 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} 5.0V + 5%, $T_A = 0^{\circ}$ C to + 70°; Mil: V_{CC} = 5.0V ± 10% $T_A = 55^{\circ}$ C + 125°C V_{HC} = V_{CC} - 0.2V

Symbol	Parameter	54FCT/74FCT		Units	Conditions			
Symbol	raiameter	Min	Тур	Max	Units			
VIH	Minimum High Level Input Voltage	2.0			v			
V _{IL}	Maximum Low Level Input Voltage			0.8	v			
lін	Input High Current	-		5.0 5.0	μA	V _{CC} = Max	V _I = V _{CC} V _I = 2.7V (Note 2)	
կլ	Input Low Current			-5.0 -5.0	μA	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND	
l _{OZ}	Maximum TRI-STATE Current			10.0 10.0 10.0 10.0	μА	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V \text{ (Note 2)}$ $V_{O} = 0.5V \text{ (Note 2)}$ $V_{O} = \text{GND}$	
VIK	Clamp Diode Voltage		-0.7	-1.2	v	$V_{CC} = Min; I_N = -18 \text{ mA}$		
los	Short Circuit Current	-60	- 120		mA	V _{CC} = Max (Note 1); V _O	= GND	
VOH	Minimum High Level	2.8	3.0			$V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{HC}; I_{OH} = -32 \mu\text{A}$		
	Output Voltage	V _{HC} 2.4 2.4	V _{CC} 4.3 4.3		v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -300 \ \mu A$ $I_{OH} = -12 \ mA$ (Mil) $I_{OH} = -15 \ mA$ (Com)	
V _{OL}	Maximum Low Level		GND	0.2		$V_{CC} = 3V; V_{IN} = 0.2V o$	r V _{HC} ; I _{OL} = 300 μA	
	Output Voltage		GND 0.3 0.3	0.2 0.50 0.50	v	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = 300 \ \mu A$ $I_{OL} = 32 \ mA \ (Mil)$ $I_{OL} = 48 \ mA \ (Com)$	

DC Characteristics for 'FCT Family Devices (Continued) Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V + 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$; Mil: $V_{CC} = 5.0V \pm 10\%$ $T_A = -55^{\circ}C$ $+ 125^{\circ}C; V_{HC} = V_{CC} - 0.2V$

Symbol	Parameter	74FCT			Units	Conditions		
oymbol	ralameter	Min Typ Max		Units	Conditions			
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\label{eq:V_C} \begin{array}{l} V_{CC} = Max \\ V_{IN} \geq V_{HC}, V_{IN} \leq 0.2V \\ f_I = 0 \end{array}$		
∆I _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		
ICCD	Dynamic Power Supply Current (Note 4)		0.15	0.25	mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{OE} = GND$ One Input Toggling 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
c	Total Power Supply Current (Note 6)		1.5	4.0		Outputs Open $V_{IN} \leq$ $\overline{OE} = GND$ fcp = 10 MHZ $V_{IN} =$ $V_{IN} =$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			1.8	6.0	mA		V _{IN} = 3.4\ V _{IN} = GNI	
	-0		3.0	7.8		(Note 5) $V_{CC} = Max$ Outputs Open $\overline{OE} = GND$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			5.0	16.8		$f_{CP} = 10 \text{ MHz}$ 50% Duty Cycle $f_I = 2.5 \text{ MHz}$ Eight Bits Toggling 50% Duty Cycle	V _{IN} = 3.4\ V _{IN} = GNI	

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input (VIN = 3.4V); all other inputs at VCC or GND.

Note 4: This parameter is not directly testable, but is derived for use In Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$

I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

D_H = Duty Cycle for TTL inputs High

NT = Number of Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_I = Input Frequency

NI = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

Note 7: For 54FCT, I_{CCD} = 0.40 mA/MHz.

Refer to applicable standard military drawing or NSC Table I for test conditions and I_C/I_{CC} limits.

564

		54FCT/74FCT	74	FCT	$54FCT$ $T_{A}, V_{CC} = Mil$ $R_{L} = 500\Omega$ $C_{L} = 50 \text{ pF}$ $Min \qquad Max$		Units	
Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = 5.0V$	RL =	c = Com 500Ω 50 pF				Fig. No.
		Тур	Min (Ne	ote) Max				
t _{PLH} t _{PHL}	Propagation Delay CP to \overline{O}_n	6.6	2.0	10.0			ns	2-8
tPZH tPZL	Output Enable Time	9.0	1.5	12.5			ns	2-11
t _{PHZ} t _{PLZ}	Output Disable Timed	6.0	1.5	8.0			ns	2-11
ts	Set-Up Time High or Low D _n to CP	1.0	2.0	_			ns	2-10
ŧн	HOLD Time High or Low D _n to CP	0.5	2.0	_			ns	2-10
tw	CP Pulse Width High or Low	4.0	7.0	~			ns	2-9

564

Note: Minimum limits are guaranteed but not tested on propagation delays.

Capacitance (T_A = +25°C, f = 1.0 MHz)

Symbol	Parameter	Тур	Max	Units	Conditions	
CIN	Input Capacitance	6	10	рF	$V_{IN} = 0V$	
Соит	Output Capacitance	8	12	pF	V _{OUT} = 0V	

Note: This parameter is measured at characterization but not tested.

COUT for 74FCT only.

. .

6-69