PRELIMINARY

National Semiconductor

74LCX16652 Low-Voltage Transceiver/Register with 5V Tolerant Inputs and Outputs

General Description

The LCX16652 contains sixteen non-inverting bidirectional bus transceivers with TRI-STATE® outputs providing multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to the HIGH logic level. Output Enable pins (OEAB, OEBA) are provided to control the transceiver function.

The LCX16652 is designed for low-voltage (3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment.

The LCX16652 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- Ideal for low power/low noise 2.7 to 3.6V applications
- Power-down static overvoltage protection on inputs and
- outputs
 Outputs source/sink 24 mA
- Guaranteed simultaneous switching noise level
- Available in SSOP and TSSOP
- Implements patented Quiet Series noise/EMI reduction circuitry
- Functionally compatible with the 74 series 16652
- Latch-up performance exceeds 300 mA
- ESD performance: Human Body Model > 2000V Machine Model > 250V

Ordering Code: See Section 11

A0 A1 A2 A3 A4 A5 A6 A7 OEBA1 CPAB1 SAB1 OEAB1 OEAB1	CP S OE	BA ₂ O
BBA ₁ B ₀ B ₁ B ₂ B ₃ B ₄ B ₅ B ₆ B ₇	S B ₈ B ₉ B ₁₀ B ₁₁ B ₁₂ B ₁₃ B ₁₄ B ₁	BA ₂
	 TL/F/	12005–1
	SSOP EIAJ	12005-1 TSSOP JEDEC
Order Number		

Logic Symbol

Connection Diagram

Pin Assignment for SSOP and TSSOP

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both.

The select $(\mathsf{SAB}_n, \mathsf{SBA}_n)$ controls can multiplex stored and real-time.

The examples in *Figure 1* demonstrate the four fundamental bus-management functions that can be performed with the 74LCX16652.

Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW to HIGH transitions at the ap-

propriate Clock Inputs (CPAB_n, CPBA_n) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D flip-flops by simultaneously enabling OEAB_n and $\overline{OEBA_n}$. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

		Inpu	ts			Inputs/	Outputs	Operating Mode	
OEAB1	OEBA 1	CPAB ₁	CPBA ₁	SAB1	SBA1	A ₀ thru A ₇	B ₀ thru B ₇		
L	н	H or L	H or L	х	x	Input	Input	Isolation	
L	н	5	<u>`</u>	_ x	x	mpar	mpar	Store A and B Data	
х	н	5	H or L	х	x	Input	Not Specified	State A, Hold B	
н	н	5	5	X	x	Input	Output	Store A in Both Registers	
L	x	H or L	5	х	×	Not Specified	Input	Hold A, Store B	
L	L	5	~	х	x	Output	Input	Store B in Both Registers	
L	L	х	X	X	L	Output	Input	Real-Time B Data to A Bus	
L	L	х	H or L	X	н	Culput	mpar	Store B Data to A Bus	
н	н	х	х	L	x	Ineut	Output	Real-Time A Data to B Bu	
Н	н	H or L	х	Н	x	Input		Stored A Data to B Bus	
н	L	H or L	H or L	н	н	Output	Output	Stored A Data to B Bus an Stored B Data to A Bus	

Function Table (Note)

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

IDW to HIGH Clock Transition

Note: The data output functions may be enabled or disabled by various signals at OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW to HIGH transition on the clock inputs. This also applies to data I/O (A and B: 8–15) and #2 control pins.

LCX 16652

LCX16652

Logic Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _I)	-0.5V to +7.0V
Output Voltage (V _O)	
Outputs Tri-Stated	-0.5V to +7.0V
Outputs Active (Note 2)	$-0.5 V$ to V_{CC} $+0.5 V$
DC Input Diode Current (I_{IK}) V _I < 0	— 50 mA
DC Output Diode Current (IOK)	
V _O < 0	—50 mA
$V_{O} > V_{CC}$	+ 50 mA
DC Output Source/Sink Current (IOH/	l _{OL}) ± 50 mA
DC V _{CC} or Ground Current	
per Supply Pin (I _{CC} or I _{GND})	± 100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operation Conditions" table will define the conditions for actual device operation.

Note 2: Io Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Recommended Operating Conditions

••••••	
Supply Voltage	
Operating	2.0V to 3.6V
Data Retention Only	1.5V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	
Output in Active State	0V to V _{CC}
Output in "OFF" State	0V to 5.5V
Output Current I _{OH} /I _{OL}	
$V_{CC} = 3.0V$ to 3.6V	± 24 mA
$V_{CC} = 2.7V \text{ to } 3.0V$	± 12 mA
Free Air Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Ratge (\Deltat/DV)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V

Cumbal	Deservator	V _{CC}	$T_A = -40^{\circ}C$	to +85°C	Units	Oandikiana	
Symbol	Parameter	(V)	Min	Max	Units	Conditions	
VIH	High Level Input Voltage	2.7-3.6	2.0			$V_{OUT} \le 0.1V \text{ or}$	
VIL	Low Level Input Voltage	2.7-3.6		0.8		$\geq V_{CC} - 0.1V$	
V _{OH}	High Level Output Voltage	2.7-3.6 2.7 3.0 3.0	V _{CC} - 0.2 2.2 2.4 2.2		v	$I_{OH} = -100 \ \mu A$ $I_{OH} = -12 \ m A$ $I_{OH} = -18 \ m A$ $I_{OH} = -24 \ m A$	
V _{OL}	Low Level Output Voltage	2.7-3.6 2.7 3.0		0.2 0.4 0.55	v	$I_{OL} = 100 \ \mu A$ $I_{OL} = 12 \ mA$ $I_{OL} = 24 \ mA$	
h	Input Leakage Current	2.7-3.6		±5.0	μΑ	$0 \le V_{I} \le 5.5V$	
l _{OZ}	TRI-STATE I/O Leakage	2.7-3.6		±5.0	μΑ	$0 \le V_O \le 5.5V$ $V_I = VIH \text{ or } V_{IL}$	
IOFF	Power Off Leakage Current	0		100	μΑ	$V_{\rm I}$ or $V_{\rm O} = 5.5 V$	
lcc	Quiescent Supply Current	2.7-3.6		20	μΑ	$V_{I} = V_{CC} \text{ or } GND$	
		2.7 0.0		±20	μΑ	$3.6 \le (V_{\rm I}, V_{\rm O}) \le 5.5^{\rm V}$	
ΔI _{CC}	Increase in I _{CC} per Input	2.7-3.6		500	μA	$V_{\rm IH} = V_{\rm CC} - 0.6V$	

LCX16652

Symbol	Parameter Propagation Delay Bus to Bus	V _{CC} (V) 2.7 3.0-3.6	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C,$ $C_{L} = 50 \text{ pF}$		
			Min	Max (Note 2)	
^t PHL t _{PLH}			1.5 1.5	6.6 6.0	ns
t _{PHL} t _{PLH}	Propagation Delay Clock to Bus	2.7 3.0-3.6	1.5 1.5	8.3 7.5	ns
^t PHL t _{PLH}	Propagation Delay SAB or SBA to A _n or B _n	2.7 3.0~3.6	1.5 1.5	8.3 7.5	ns
t _{PZH} t _{PZL}	Output Enable Time OEBA to A _n or B _n	2.7 3.0-3.6	1.5 1.5	8.3 7.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time $\overline{\text{OEBA}}$ to A_n or B_n	2.7 3.0-3.6	1.5 1.5	8.3 7.5	ns
t _{PZH} t _{PZL}	Output Enable Time OEAB to A _n or B _n	2.7 3.0-3.6	1.5 1.5	8.3 7.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time OEAB to A _n or B _n	2.7 3.0–3.6	1.5 1.5	8.3 7.5	ns
ts	Setup Time	2.7 3.0-3.6	2.5 2.5		ns
t _H	Hold Time	2.7 3.0-3.6	1.5 1.5		ns
tw	Pulse Width	2.7 3.0–3.6	4.0 4.0		ns
t _{OSHL} , b toslh	Output to Output Skew (Note 1)	3.0		1.0	ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design. Note 2: The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.

Dynamic Switching Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	V _{CC} (V)	Typical	Units	Conditions
VOLP	Quiet Output Dynamic Peak VOL	3.3	0.8	V	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$
VOLV	Quiet Output Dynamic Valley V _{OL}	3.3	0.8	V	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$

Capacitance

Symbol	Parameter	Typical	Units	Conditions
C _{IN}	Input Capacitance	7	pF	$V_{CC} = Open$ $V_I = 0V \text{ or } V_{CC}$
C _{I/O}	Input/Output Capacitance	8	pF	$V_{CC} = 3.3V$ $V_{I} = 0V \text{ or } V_{CC}$
C _{PD}	Power Dissipation Capacitance	32	pF	$V_{CC} = 3.3V$ $V_I = 0V \text{ or } V_{CC}$ F = 10 MHz