PRELIMINARY

National Semiconductor

74LCX373 Low-Voltage Octal Transparent Latch with 5V Tolerant Inputs and Outputs

General Description

The LCX373 consists of eight latches with TRI-STATE® outputs for bus organized system applications. The device is designed for low voltage (3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment.

The LCX373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- Ideal for low power/low noise 2.7V to 3.6V applications
- Power-down static overvoltage protection on inputs and outputs
- Outputs source/sink 24 mA
- Guaranteed simultaneous switching noise level
- Available in SOIC JEDEC, SOIC EIAJ and TSSOP
- Implements patented Quiet Series noise/EMI reduction circuitry
- Functionally compatible with the 74 series 373
- Latchup performance exceeds 300 mA
- ESD performance: Human Body Model > 2000V Machine Model > 250V

Ordering Code: See Section 11

Logic Symbols

Connection Diagram

Pin Names	Description
D0-D7	Data Inputs
LE	Latch Enable Input
ŌĒ	Output Enable Input
00-07	TRI-STATE Latch Outputs

	SOIC JEDEC	SOIC EIAJ	TSSOP JEDEC
Order Number	74LCX373WM 74LCX373WMX	74LCX373SJ 74LCX373SJX	74LCX373MTCX
See NS Package Number	M20B	M20D	MTC20

Preliminary Data: National Semiconductor reserves the right to make changes at any time without notice.

LCX373

Functional Description

The LCX373 contains eight D-type latches with TRI-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Truth Table

	Inputs		
LE	LE OE D _n		On
X	н	х	Z
н	<u>ι</u>	L	L
∣н	L	н	н
1 L	L	X	O ₀

H = HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance X = Immaterial

O₀ = Previous O₀ before HIGH to LOW transition of Latch Enable

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _I)	-0.5V to +7.0V
Output Voltage (V _O) Outputs TRI-STATE Outputs Active (Note 2)	-0.5V to +7.0V -0.5V to V _{CC} + 0.5V
DC Input Diode Current (I_{IK}) V _I < 0	—50 mA
DC Output Diode Current (I _{OK})	
V _O < 0	—50 mA
$V_{O} > V_{CC}$	+ 50 mA
DC Output Source/Sink Current (IOF	1/I _{OL}) ± 50 mA
DC V _{CC} or Ground Current	
per Supply Pin (I _{CC} or I _{GND})	± 100 mA
Storage Temperature Range (TSTG)	-65°C to +150°C
Note 1: The "Absolute Maximum Ra	atings" are those values

beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Recommended Operating Conditions

Supply Voltage	
Operating	2.0V to 3.6V
Data Retention Only	1.5V to 3.6V
Input Voltage (VI)	0V to 5.5V
Output Voltage (V _O)	
Output in Active State	0V to V _{CC}
Output in "OFF" State	0V to 5.5V
Output Current IOH/IOL	3 B.
$V_{CC} = 3.0V$ to 3.6V	±24 mA
$V_{CC} = 2.7V \text{ to } 3.0V$	± 12 mA
Free Air Operating Temperature (TA)	-40°C to +85°C
Minimum Input Edge Ratge (\Deltat/DV)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V

Symbol	Parameter	v _{cc}	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$			
		(V)	Min	Max	Units	Conditions
VIH	High Level Input Voltage	2.7-3.6	2.0		v	$V_{OUT} \le 0.1V$ or
VIL	Low Level Input Voltage	2.7-3.6		0.8		$\geq V_{CC} - 0.1V$
V _{OH}	High Level Output Voltage	2.7-3.6 2.7 3.0 3.0	V _{CC} - 0.2 2.2 2.4 2.2		v	$I_{OH} = -100 \ \mu A$ $I_{OH} = -12 \ m A$ $I_{OH} = -18 \ m A$ $I_{OH} = -24 \ m A$
V _{OL}	Low Level Output Voltage	2.7–3.6 2.7 3.0	1	0.2 0.4 0.55	v	$I_{OL} = 100 \ \mu A$ $I_{OL} = 12 \ m A$ $I_{OL} = 24 \ m A$
կ	Input Leakage Current	2.7-3.6		±5.0	μA	$0 \le V_{ } \le 5.5V$
l _{oz}	TRI-STATE Output Leakage	2.7-3.6		±5.0	μΑ	$0 \le V_0 \le 5.5V$ $V_I = V_{IH} \text{ or } V_{IL}$
OFF	Power Off Leakage Current	0		100	μΑ	$V_{\rm I}$ or $V_{\rm O} = 5.5V$
lcc	Quiescent Supply Current	2.7-3.6		10	μΑ	$V_{I} = V_{CC} \text{ or } GND$
		2.7-5.0		±10	μΑ	$3.6 \le (V_{\rm I}, V_{\rm O}) \le 5.5^{\circ}$
ΔI _{CC}	Increase in I _{CC} per Input	2.7-3.6		500	μA	$V_{\rm IH} = V_{\rm CC} - 0.6V$

Symbol	Parameter	V _{CC} (V)	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_{L} = 50 \text{ pF}$		Units
			Min	Max (Note 2)	
t _{PHL} t _{PLH}	Propagation Delay D _n to O _n	2.7 3.0-3.6	1.5 1.5	9.0 8.0	ns
t _{PHL} t _{PLH}	Propagation Delay LE to O _n	2.7 3.0-3.6	1.5 1.5	9.5 8.5	ns
t _{PZH} t _{PZL}	Output Enable Time	2.7 3.0-3.6	1.5 1.5	9.5 8.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time	2.7 3.0-3.6	1.5 1.5	8.5 7.5	ns
t _s	Setup Time D _n to LE	2.7 3.0-3.6	2.5 2.5		
ţн	Hold Time D _n to LE	2.7 3.0–3.6	1.5 1.5		ns
t _W	LE Pulse Width	2.7 3.0–3.6	4.0 4.0		ns
toshli toslh	Output to Output Skew (Note 1)	3.0		1.0	ns

LCX373

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (L_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design. Note 2: The maximum AC limits are design targets. Actual performance will be specified upon completion of characterization.

Dynamic Switching Characteristics: See Section 2 for Test Methodology

Symbol	Parameter	V _{CC} (V)	T _A = 25°C	Units	Conditions	
Symbol			Typical	Units		
VOLP	Quiet Output Dynamic Peak VOL	3.3	0.8	V	$C_{L} = 50 pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$	
VOLV	Quiet Output Dynamic Valley VOL	3.3	0.8	V	$C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	

Capacitance

Symbol	Parameter	Typical	Units	Conditions
C _{IN}	Input Capacitance	,7	pF	$V_{CC} = Open$ $V_{I} = 0V \text{ or } V_{CC}$
COUT	Output Capacitance	12	ρF	$V_{CC} = 3.3V$ $V_{I} = 0V \text{ or } V_{CC}$
C _{PD}	Power Dissipation Capacitance	32	pF	$V_{CC} = 3.3V$ $V_{I} = 0V \text{ or } V_{CC}$ F = 10 MHz

Note 1: Guaranteed by design.