# LCX541

National Semiconductor

#### PRELIMINARY

## 74LCX541 **Octal Buffer/Line Driver with 5V Tolerant Inputs and Outputs**

#### **General Description**

The 'LCX541 is an octal buffer/line driver designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers. The 'LCX541 is a noninverting option of the 'LCX540.

This device is similar in function to the 'LCX244 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes this device especially useful as an output port for microprocessors, allowing ease of layout and greater PC board density.

The 'LCX541 is designed for low voltage (3.3V) V<sub>CC</sub> applications with capability of interfacing to a 5V signal environment. The 'LCX541 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

#### Features

- 5V tolerant input and outputs
- 6.5 ns tpD max, 10 µA lCCO max
- Power-down high impedance inputs and outputs
- 2.0V-3.6V V<sub>CC</sub> supply operation
- ±24 mA output drive
- Implements patented Quiet Series<sup>™</sup> noise/ EMI reduction circuitry
- Functionally compatible with 74 series 541
- Latch-up performance exceeds 500 mA
- ESD performance: Human body model > 2000V Machine model > 200V

## Logic Symbol



## **Connection Diagram**



#### **Truth Table**

|     | Inputs          | Outputs |         |
|-----|-----------------|---------|---------|
| OE1 | OE <sub>2</sub> | 1       | Culpula |
| L   | L               | н       | н       |
| н   | х               | Х       | Z       |
| X   | н               | Х       | z       |
| L   | L               | L       | L       |

σ

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

TI /F/12404-2

|                       | SOIC JEDEC                | SOIC EIAJ                 | SSOP Type II                | TSSOP JEDEC                 |
|-----------------------|---------------------------|---------------------------|-----------------------------|-----------------------------|
| Order Number          | 74LCX541WM<br>74LCX541WMX | 74LCX541SJ<br>74LCX541SJX | 74LCX541MSA<br>74LCX541MSAX | 74LCX541MTC<br>74LCX541MTCX |
| See NS Package Number | M20B                      | M20D                      | MSA20                       | MTC20                       |

Preliminary Data: National Semiconductor reserves the right to make changes at any time without notice.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Symbol           | Parameter                        | Value                         | Conditions                           | Units |
|------------------|----------------------------------|-------------------------------|--------------------------------------|-------|
| V <sub>CC</sub>  | Supply Voltage                   | -0.5 to +7.0                  |                                      | v     |
| VI               | DC Input Voltage                 | -0.5 to +7.0                  |                                      | v     |
| vo               | DC Output Voltage                | -0.5 to +7.0                  | Output in TRI-STATE                  | V     |
|                  |                                  | -0.5 to V <sub>CC</sub> + 0.5 | Output in High or Low State (Note 2) | v     |
| l <sup>IK</sup>  | DC Input Diode Current           | -50                           | V <sub>I</sub> < GND                 | mA    |
| юк               | DC Output Diode Current          | -50<br>+50                    | $V_O < GND$<br>$V_O > V_{CC}$        | mA    |
| lo               | DC Output Source/Sink Current    | ±50                           |                                      | mA    |
| lcc              | DC Supply Current per Supply Pin | ±100                          |                                      | mA    |
| IGND             | DC Ground Current per Ground Pin | ±100                          |                                      | mA    |
| T <sub>STG</sub> | Storage Temperature              | -65 to +150                   |                                      | °C    |

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

### **Recommended Operating Conditions**

| Symbol                           | Parameter                               |                                           | Min        | Max                    | Units    |
|----------------------------------|-----------------------------------------|-------------------------------------------|------------|------------------------|----------|
| V <sub>CC</sub>                  | Supply Voltage                          | Operating<br>Data Retention               | 2.0<br>1.5 | 3.6<br>3.6             | v        |
| VI                               | Input Voltage                           |                                           | 0          | 5.5                    | V        |
| Vo                               | Output Voltage                          | HIGH or LOW State<br>TRI-STATE            | 0<br>0     | V <sub>CC</sub><br>5.5 | v        |
| I <sub>OH</sub> /I <sub>OL</sub> | Output Current                          | $V_{CC} = 3.0V - 3.6V$<br>$V_{CC} = 2.7V$ |            | ±24<br>±12             | mA       |
| T <sub>A</sub>                   | Free-Air Operating Temperature          |                                           | -40        | 85                     | <b>℃</b> |
| Δt/ΔV                            | Input Edge Rate, V <sub>IN</sub> = 0.8V | $V-2.0V, V_{CC} = 3.0V$                   | 0          | 10                     | ns/V     |

#### **DC Electrical Characteristics**

| Symbol           | Parameter                             | Conditions $V_{CC}$ $T_A = -40^{\circ}$                   |         | C to +85°C            | Units |    |
|------------------|---------------------------------------|-----------------------------------------------------------|---------|-----------------------|-------|----|
| Symbol           | Faranteter                            | Conditions                                                | (V)     | Min                   | Max   |    |
| VIH              | HIGH Level Input Voltage              |                                                           | 2.7-3.6 | 2.0                   |       | V  |
| VIL              | LOW Level Input Voltage               |                                                           | 2.7-3.6 |                       | 0.8   | V  |
| VOH              | HIGH Level Output Voltage             | i <sub>OH</sub> = -100 μA                                 | 2.7-3.6 | V <sub>CC</sub> - 0.2 |       | V  |
|                  |                                       | $I_{OH} = -12  \text{mA}$                                 | 2.7     | 2.2                   |       | V  |
|                  |                                       | $I_{OH} = -18 \text{ mA}$                                 | 3.0     | 2.4                   |       | V  |
|                  |                                       | $I_{OH} = -24 \text{ mA}$                                 | 3.0     | 2.2                   |       | V  |
| VOL              | LOW Level Output Voltage              | I <sub>OL</sub> = 100 μA                                  | 2.7-3.6 |                       | 0.2   | V  |
|                  |                                       | $I_{OL} = 12 \text{ mA}$                                  | 2.7     |                       | 0.4   | V  |
|                  |                                       | $I_{OL} = 16 \text{ mA}$                                  | 3.0     |                       | 0.4   | V  |
|                  |                                       | $I_{OL} = 24 \text{ mA}$                                  | 3.0     |                       | 0.55  | V  |
| կ                | Input Leakage Current                 | $0 \le V_{I} \le 5.5V$                                    | 2.7-3.6 |                       | ±5.0  | μA |
| l <sub>oz</sub>  | TRI-STATE Output Leakage              | $0 \le V_0 \le 5.5V$<br>$V_I = V_{IH} \text{ or } V_{IL}$ | 2.7-3.6 |                       | ±5.0  | μΑ |
| IOFF             | Power-Off Leakage Current             | $V_{\rm I}$ or $V_{\rm O} = 5.5 V$                        | 0       |                       | 100   | μΑ |
| lcc              | Quiescent Supply Current              | $V_{I} = V_{CC} \text{ or GND}$                           | 2.7-3.6 |                       | 10    | μΑ |
|                  |                                       | $3.6V \leq V_{\rm I}, V_{\rm O} \leq 5.5V$                | 2.7-3.6 |                       | ±10   | μΑ |
| ΔI <sub>CC</sub> | Increase in I <sub>CC</sub> per Input | $V_{IH} = V_{CC} - 0.6V$                                  | 2.7-3.6 |                       | 500   | μA |

LCX541

## AC Electrical Characteristics (Preliminary)

| Symbol                               |                                   |                          |            |                        |            |       |
|--------------------------------------|-----------------------------------|--------------------------|------------|------------------------|------------|-------|
|                                      | Parameter                         | $V_{CC} = 3.3V \pm 0.3V$ |            | V <sub>CC</sub> = 2.7V |            | Units |
|                                      |                                   | Min                      | Max        | Min                    | Max        |       |
| t <sub>PHL</sub><br>t <sub>PLH</sub> | Propagation Delay                 | 1.5<br>1.5               | 6.5<br>6.5 | 1.5<br>1.5             | 7.5<br>7.5 | ns    |
| t <sub>PZL</sub><br>t <sub>PZH</sub> | Output Enable Time                | 1.5<br>1.5               | 8.0<br>8.0 | 1.5<br>1.5             | 9.0<br>9.0 | ns    |
| tpLZ<br>tpHZ                         | Output Disable Time               | 1.5<br>1.5               | 7.0<br>7.0 | 1.5<br>1.5             | 8.0<br>8.0 | ns    |
| toshl<br>toslh                       | Output to Output Skew<br>(Note 1) |                          | 1.0<br>1.0 |                        |            | ns    |

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (toSHL) or LOW to HIGH (toSLH).

1

3

4

-1

## **Dynamic Switching Characteristics**

| Symbol           | Parameter                                   | Conditions                                                          | V <sub>CC</sub><br>(V) | T <sub>A</sub> = 25°C<br>Typical | Units |
|------------------|---------------------------------------------|---------------------------------------------------------------------|------------------------|----------------------------------|-------|
| V <sub>OLP</sub> | Quiet Output Dynamic Peak VOL               | $C_{L} = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$ | 3.3                    | 0.8                              | v     |
| VOLV             | Quiet Output Dynamic Valley V <sub>OL</sub> | $C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$   | 3.3                    | 0.8                              | v     |

#### Capacitance

| Symbol          | Parameter                     | Conditions                                              | Typical | Units |
|-----------------|-------------------------------|---------------------------------------------------------|---------|-------|
| C <sub>IN</sub> | Input Capacitance             | $V_{CC} = Open, V_1 = 0V \text{ or } V_{CC}$            | 7       | pF    |
| COUT            | Output Capacitance            | $V_{CC} = 3.3V$ , $V_1 = 0V$ or $V_{CC}$                | 8       | pF    |
| C <sub>PD</sub> | Power Dissipation Capacitance | $V_{CC} = 3.3V$ , $V_I = 0V$ or $V_{CC}$ , $F = 10$ MHz | 25      | рF    |

LCX541

#### 74LCX541 Ordering Information

1

4

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:



TL/F/12404-4

LCX541