PRELIMINARY

National Semiconductor

74LCX86 Low Voltage Quad 2-Input Exclusive-OR Gate with 5V Tolerant Inputs

General Description

The LCX86 contains four 2-input exclusive-OR gates. The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.

The 74LCX is fabricated with advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs
- 6.5 ns t_{PD} max, 10 µA I_{CCQ} max
- Logic Symbol

- Power down high impedance inputs
- 2.0V-3.6V V_{CC} supply operation
- ±24 mA output drive
- Implements patented Quiet Series™ noise/EMI reduction circuitry
- Functionally compatible with 74 series 86
- Latch-up performance exceeds 500 mA
- ESD performance: Human body model > 2000V Machine model > 200V

Connection Diagram

IEEE/IEC Vcc 13 Α, 12 B₂ 0, 11 0, 10 A.3 q 0 B₂ 8 GND 03

Pin Assignment for SOIC, SSOP and TSSOP $A_0 \longrightarrow \geq 1 \qquad 0_0$ $B_0 \longrightarrow 0_1$ $B_1 \longrightarrow 0_1$

TL/F/12415-1

TL/F/12415-2

Pin Names	Description
A0-A3	Inputs
B0-B3	Inputs
O ₀ -O ₃	Outputs

	SOIC JEDEC	SOIC EIAJ	TSSOP
Order Number	74LCX86M 74LCX86MX	74LCX86SJ 74LCX86SJX	74LCX86MTC 74LCX86MTCX
See NS Package Number	M14A	M14D	MTC14

Preliminary Data: National Semiconductor reserves the right to make changes at any time without notice.

Absolute Maximum Ratings (Note 1)

A second second

•

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		v
VI	DC Input Voltage	-0.5 to +7.0		v
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	Output in High or Low State (Note 2)	v v
lικ	DC Input Diode Current	-50	VI < GND	mA
I _{ОК}	DC Output Diode Current	-50 +50	$V_O < GND$ $V_O > V_{CC}$	mA
lo	DC Output Source/Sink Current	±50		mA
lcc	DC Supply Current per Supply Pin	±100		mA
IGND	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

Recommended Operating Conditions

Symbol	Param	Min	Max	Units V	
V _{CC}	Supply Voltage Operating Data Retention		2.0 1.5		
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	v
IOH/IOL	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V$		±24 ±12	mA
(T _A)	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V-2.0V, V _{CC} = 3.0V		0	10	ns/V

DC Electrical Characteristics

Symbol	ymbol Parameter Con	Conditions	V _{CC} (V)	$T_{A} = -40^{\circ}C \text{ to } + 85^{\circ}C$		Units
Symbol		Conditions		Min	Max	
VIH	HIGH Level Input Voltage		2.7-3.6	2.0		V
VIL	LOW Level Input Voltage		2.7-3.6		0.8	V
VOH	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7-3.6	V _{CC} - 0.2		V
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		V
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		V
VOL LOW Level Output Voltage	LOW Level Output Voltage	I _{OL} = 100 μA	2.7-3.6		0.2	V
		$I_{OL} = 12 \text{ mA}$	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	V
		I _{OL} = 24 mA	3.0		0.55	V
4	Input Leakage Current	$0 \le V_{\rm I} \le 5.5V$	2.7-3.6		±5.0	μΑ
IOFF	Power-Off Leakage Current	$V_{\rm I}$ or $V_{\rm O} = 5.5 V$	0		100	μA
Icc	Quiescent Supply Current	$V_{I} = V_{CC} \text{ or } GND$	2.7-3.6		10	μΑ
		$3.6V \le V_{I}, V_{O} \le 5.5V$	2.7-3.6		± 10	μΑ
ΔI _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		500	μΑ

LCX86

0X8

AC Electrical Characteristics

Symbol		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$				
	Parameter	$V_{CC} = 3.3V \pm 0.3V$		$V_{CC} = 2.7V$		Units
		Min	Max	Min	Max	1
t _{PHL} t _{PLH}	Propagation Delay	1.5 1.5	6.5 6.5	1.5 1.5	7.0 7.0	ns
toshl toslh	Output to Output Skew (Note 1)		1.0 1.0			ns

Note 1: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (toSHL) or LOW to HIGH (toSLH).

Dynamic Switching Characteristics

Symbol Parameter	Conditions	Vcc	T _A = 25°C	Units	
Jynibol	Symbol Parameter		(V)	Typical	
VOLP	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	v
VOLV	Quiet Output Dynamic Valley V_{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	v

Capacitance

Symbol	Symbol Parameter Conditions		Typical	Units
CIN	Input Capacitance	V_{CC} = Open, V_{I} = 0V or V_{CC}	7	рF
COUT	Output Capacitance	$V_{CC} = 3.3V, V_1 = 0V \text{ or } V_{CC}$	8	pF
CPD	Power Dissipation Capacitance	$V_{CC} = 3.3V, V_I = 0V \text{ or } V_{CC}, F = 10 \text{ MHz}$	25	pF

74LCX86 Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

M = Molded Small Outline Package, JEDEC

SJ = (0.300" Wide) Molded Small Outline Package, EIAJ

MTC = Thin Shrink Small Outline Package, JEDEC

4.4 mm Body Width

TL/F/12415-3