54LS/74LS256 ### **DUAL 4-BIT ADDRESSABLE LATCH** **DESCRIPTION** — The '256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (A₀, A₁), an active LOW Enable input ($\overline{\mathbb{C}}$) and an active LOW Clear input ($\overline{\mathbb{C}}$ L). Each latch has a Data input (D) and four outputs (Q₀ — Q₃). When the Enable (\overline{E}) is HIGH and the Clear input (\overline{CL}) is LOW, all outputs (Q_0-Q_3) are LOW. Dual 4-channel demultiplexing occurs when the \overline{CL} and \overline{E} are both LOW. When \overline{CL} is HIGH and \overline{E} is LOW, the selected output (Q_0-Q_3) , determined by the Address inputs, follows D. When the \overline{E} goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode $(\overline{E}=LOW, \overline{CL}=HIGH)$, changing more than one bit of the Address (A_0,A_1) could impose a transient wrong address. Therefore, this should be done only while in the memory mode $(\overline{E}=\overline{CL}=HIGH)$. - SERIAL-TO-PARALLEL CAPABILITY - OUTPUT FROM EACH STORAGE BIT AVAILABLE - RANDOM (ADDRESSABLE) DATA ENTRY - EASILY EXPANDABLE - ACTIVE LOW COMMON CLEAR **ORDERING CODE:** See Section 9 | | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG | | |--------------------|-----|--|---|------|--| | PKGS | оит | $V_{CC} = +5.0 \text{ V } \pm 5\%,$
$T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$ | $V_{CC} = +5.0 \text{ V} \pm 10\%,$
$T_A = -55^{\circ} \text{ C to} + 125^{\circ} \text{ C}$ | TYPE | | | Plastic
DIP (P) | Α | 74LS256PC | | 9B | | | Ceramic
DIP (D) | A | 74LS256DC | 54LS256DM | 6B | | | Flatpak
(F) | Α | 74LS256FC | 54LS256FM | 4L | | # CONNECTION DIAGRAM PINOUT A #### LOGIC SYMBOL V_{CC} = Pin 16 GND = Pin 8 #### INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions | PIN NAMES | DESCRIPTION | 54/74LS (U.L.)
HIGH/LOW | |-----------------------------------|--------------------------------------|----------------------------| | No, A1 | Common Address Inputs | 0.5/0.25 | | Da, Db | Data Inputs | 0.5/0.25 | | Da, Db
Ē | Common Enable Input (Active LOW) | 1.0/0.5 | | CL | Conditional Clear Input (Active LOW) | 0.5/0.25 | | Q _{0a} — Q _{3a} | Side A Latch Outputs | 10/5.0 | | | · · | (2.5) | | Q _{0b} — Q _{3b} | Side B Latch Outputs | 10/5.0 | | | · | (2.5) | #### TRUTH TABLE | INPUTS | | | OUTPUTS | | | | MODE | | |--------|------|------------|----------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------| | CL | Ē | A 0 | A ₁ | Q ₀ | Q ₁ | Q ₂ | Q ₃ | | | L | Н | Х | Х | ٦ | L | L | L | Clear | | | بديد | דודו | L
H
H | ם ב ב ם | L D L | L
L | D | Demultiplex | | Н | H | Х | Х | Q _{t-1} | Q _{t-1} | Q_{t-1} | Q _{t-1} | Memory | | TITI | | JIJI | LHH | D
Qt-1
Qt-1
Qt-1 | Qt-1
D
Qt-1
Qt-1 | Qt-1
Qt-1
D
Qt-1 | Qt-1
Qt-1
Qt-1
D | Addressable
Latch | t-1 = Bit time before address change or rising edge of E H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial ## **MODE SELECTION** | Ē | CL | MODE | |------|---------|--| | rrır | - r I I | Addressable Latch
Memory
Active HIGH 4-Channel Demultiplexers
Clear | #### LOGIC DIAGRAM # DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) | SYMBOL | PARAMETER | 54/ | 74LS | UNITS | CONDITIONS | |--------|----------------------|-----|------|-------|-----------------------| | | | Min | Max | | | | lcc | Power Supply Current | | 25 | mA | V _{CC} = Max | # $\textbf{AC CHARACTERISTICS: } V_{CC} = +5.0 \text{ V, } T_{A} = +25^{\circ} \text{C (See Section 3 for waveforms and load configurations)}$ | | | 54/ | 74LS | UNITS | CONDITIONS | |--------------|---|------------------|----------|-------|-----------------| | SYMBOL | PARAMETER | C _L = | 15 pF | | | | | | Min | Max |] | | | tpLH
tpHL | Propagation Delay
E to Q _n | | 27
24 | ns | Figs. 3-1, 3-9 | | tpLH
tpHL | Propagation Delay
D _n to Q _n | | 30
20 | ns | Figs. 3-1, 3-5 | | tpLH
tpHL | Propagation Delay A_n to Q_n | | 30
20 | ns | Figs. 3-1, 3-20 | | tPHL | Propagation Delay
CL to Q _n | | 18 | ns | Figs. 3-1, 3-16 | # AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$ | SYMBOL | PARAMETER | 54/ | 74LS | UNITS | CONDITIONS | |--------------------|--|-----|------|-------|------------| | | 1 Allawa I all | Min | Max |] | - | | ts (H) | Setup Time HIGH
D _n to E | 20 | | ns | Fig. 3-13 | | t _h (H) | Hold Time HIGH
D _n to E | 0 | | ns | Fig. 3-13 | | t _s (L) | Setup Time LOW
Dn to E | 15 | | ns | Fig. 3-13 | | th (L) | Hold Time LOW
Dn to E | 0 | | ns | Fig. 3-13 | | t _s (H) | Setup Time HIGH or LOW,
An to E | 0 | | ns | Fig. 3-21 | | t _w (L) | E Pulse Width LOW | 17 | | ns | Fig. 3-21 |