54LS/74LS390 DUAL DECADE COUNTER

DESCRIPTION — The '390 contains a pair of high speed 4-stage ripple counters. Each half of the '390 is partitioned into a divide-by-two section and a divide-by-five section, with a separate clock input for each section. The two sections can be connected to count in the 8421 BCD code or they can count in a bi-quinary sequence to provide a square wave (50% duty cycle) at the final output.

Each half of the '390 contains a \div 5 section that is independent except for the common MR function. The \div 5 section operates in 421 binary sequence, as shown in the \div 5 Truth Table, with the third stage output exhibiting a 20% duty cycle when the input frequency is constant. To obtain a \div 10 function having a 50% duty cycle output, connect the input signal to CP1 and connect the Q3 output to the CP0 input; the Q0 output provides the desired 50% duty cycle output. If the input frequency is connected to CP0 and the Q0 output is connected to CP1, a decade divider operating in the 8421 BCD code is obtained, as shown in the BCD Truth Table. Since the flip-flops change state asynchronously, logic signals derived from combinations of '390 outputs LOW and prevents counting.

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	ουτ	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%$, $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	TYPE
Plastic DIP (P)	A	74LS390PC		9B
Ceramic DIP (D)	A	74LS390DC	54LS390DM	6B
Flatpak (F)	A	74LS390FC	54LS390FM	4L

INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L.) HIGH/LOW	
CP0 CP1	+2 Section Clock Input (Active Falling Edge)	1.0/1.5	
CP1	+5 Section Clock Input (Active Falling Edge)	2.0/2.0	
MR	Asynchronous Master Reset Input (Active HIGH)	0.5/0.25	
$Q_0 - Q_3$	Flip-flop Outputs*	10/5.0	
		(2.5)	

*The Q0 Output is guaranteed to drive the full rated fan-out plus the CP1 input.

CONNECTION DIAGRAM PINOUT A 390 LOGIC DIAGRAM (one half shown) CP CP₀ CP CP ĸ CP J κ CP J κ J κ J CD CD \mathbf{c}_{D} CD o Q Q Q Q MR $\dot{\mathbf{a}}_0$ ġ1 a2 **Q**3

> BCD TRUTH TABLE (Input on CP₀; Q₀ to CP₁)

COUNT	OUTPUTS				
	Q3	Q2	Q1	Q ₀	
0	L	L	L	L	
1	L	L	L	н	
2	L	L	н	L	
3	L	L	н	н	
4	L	н	L	L	
5	L	н	L	н	
6	L	н	н	L	
7	L	н	н	н	
8	н	L	L	L	
9	н	L	L	н	

÷5 TRUTH TABLE (Input on CP1)

COUNT	OUTPUTS				
	Q3	Q2	Q1		
0	L	L	L		
1	L	L	н		
2	L	н	L		
3	L	н	н		
4	н	L	L		

H = HIGH Voltage Level L = LOW Voltage Level

H = HIGH Voltage Level L = LOW Voltage Level

STATE DIAGRAM

390

SYMBOL	PARAMETER		54/74LS		UNITS	CONDITIONS	
	FARAMETER		Min	Max		CONDITIONS	
4н	Input HIGH Current, CP0, CP1			0.1	mA	$V_{CC} = Max, V_{IN} = 5.5 V$	
lcc	Power Supply Current '390 '393			30	mA	V _{CC} = Max	
AC CHAR	ACTERISTICS: V _{CC} = +5.0	V, T _A = +	-25° C (See S	Section 3 fo	r waveforms a	and load configurations)	
	PARAMETER		54/74LS		UNITS	CONDITIONS	
SYMBOL			C _L = 15 pF				
			Min	Max			
f _{max}	Maximum Count Frequer CP ₀ ('390) or CP ('393)	тсу	40		MHz	Figs. 3-1, 3-9	
f _{max}	CP1 Maximum Count Frequency		20		MHz	Figs. 3-1, 3-9	
tPLH tPHL	Propagation Delay CP ₀ ('390) or CP ('393) to	Q0		15 15	ns	Figs. 3-1, 3-9	
tPLH tPHL	Propagation Delay CP ₁ ('390) to Q ₁			21 21	ns		
tPLH tPHL	Propagation Delay CP1 ('390) to Q2			30 30	ns	Figs. 3-1, 3-9	
tPLH tPHL	Propagation Delay CP1 ('390) to Q3			21 21	ns	- Figs. 3-1, 3-9	
tPLH tPHL	Propagation Delay CP ('393) to Q ₁			30 30	ns	ns Figs. 3-1, 3-9 ns	
tPLH tPHL	Propagation Delay CP ('393) to Q ₂			40 40	ns		
tPLH tPHL	Propagation Delay CP ('393) to Q ₃			54 54	ns	Figs. 3-1, 3-9	
tphL	Propagation Delay MR to Qn			35	ns	Figs. 3-1, 3-17	

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$

SYMBOL	PARAMETER	54/74LS		UNITS	CONDITIONS
		Min	Max		Comprise
t _w (L)	CP or CP ₀ Pulse Width LOW	12		ns	Fig. 3-9
t _w (L)	CP1 Pulse Width LOW	25		ns	Fig. 3-9
t _w (H)	MR Pulse Width HIGH	20		ns	Fig. 3-17
t _{rec}	Recovery Time MR to CP	15		ns	Fig. 3-17