54/7492A 54LS/74LS92 DIVIDE-BY-TWELVE COUNTER

 CP1
 14
 CP0

 NC
 13
 NC

 NC
 3
 12
 Q0

 NC
 4
 111
 Q1

 Vcc
 5
 10
 GND

 MR1
 6
 9
 Q2

 MR2
 7
 8
 Q3

CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

DESCRIPTION — The '92 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-six. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	ОЛТ	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	ТҮРЕ
Plastic DIP (P)	A	7492APC, 74LS92PC		9A
Ceramic DIP (D)	А	7492ADC, 74LS92DC	5492ADM, 54LS92DM	6A
Flatpak (F)	А	7492AFC, 74LS92FC	5492AFM, 54LS92FM	31

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW	
CP ₀	÷2 Section Clock Input (Active Falling Edge)	2.0/2.0	0.125/1.5	
CP ₁	÷6 Section Clock Input (Active Falling Edge)	3.0/3.0	0.250/2.0	
MR1, MR2	Asynchronous Master Reset Input (Active HIGH)	1.0/1.0	0.5/0.25	
Q ₀	÷2 Section Output*	20/10	10/5.0 (2.5)	
Q1 — Q3	÷6 Section Outputs	20/10	10/5.0 (2.5)	

*The Q_0 output is guaranteed to drive the full rated fan-out plus the $\overline{CP_1}$ input.

FUNCTIONAL DESCRIPTION — The '92 is a 4-bit ripple type divide-by-twelve counter. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divideby-six section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q₀ output of each device is designed and specified to drive the rated fan-out plus the $\overline{CP_1}$ input of the device. A gated AND asynchronous Master Reset (MR₁, MR₂) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:

- A. Modulo 12, Divide-By-Twelve Counter The CP1 input must be externally connected to the Q0 output. The CP0 input receives the incoming count and Q3 produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter No external interconnections are required. The first flipflop is used as a binary element for the divide-by-two function. The CP₁ input is used to obtain divide-by-three operation at the Q₁ and Q₂ outputs and divide-by-six operation at the Q₃ output.

MODE SELECTION TABLE						
RESET	OUTPUTS					

INPL	JTS	OUTPUTS				
MR1	MR ₂	Q ₀	Q1	Q2	Q3	
н	Н	L	L	L	L	
L	н	Count				
H I	L	Count				
L	L	Count				

H = HIGH Voltage Level L = LOW Voltage Level

	TRUTH TABLE							
cour	лт	OUTPUT						
	Q0	Q1	Q2	Q ₃				
0	L	L	L	L				
1	н	L	L	L				
2	L	н	L	L L				
3]н	н	L	L				
4	L	L	н	L				
5	н	L	н	L				
6	L	L	L	н				
7	н	L	L	н				
8	L	н	L	н				
9	н	н	L	н				
10	L	L	н	н				
11	н	L	н	н				

TRUTH TABLE

NOTE: Output Q0 connected to CP1

LOGIC DIAGRAM

92

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
		Min	Max	Min	Max	00	
Ιн	Input HIGH Current, CP0		1.0		0.2	mA	$V_{CC} = Max, V_{IN} = 5.5 V$
ίн	Input HIGH Current, CP1		1.0		0.4	mA	$V_{CC} = Max, V_{IN} = 5.5 V$
lcc	Power Supply Current		39		15	mA	V _{CC} = Max

AC CHARACTERISTICS: $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ} \text{ C}$ (See Section 3 for waveforms and load configurations)

SYMBOL		54/74	54/74LS	UNITS	CONDITIONS
	PARAMETER	CL = 15 pF RL = 400 Ω	CL = 15 pF		
		Min Max	Min Max		
fmax	Maximum Count Frequency, CP ₀ Input	32	32	MHz	Figs. 3-1, 3-9
f _{max}	Maximum Count Frequency, CP1 Input	16	16	MHz	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₀ to Q ₀	16 18	16 18	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₀ to Q ₃	48 50	48 50	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP1 to Q1	16 21	16 21	ņs	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP1 to Q2	16 21	16 21	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP1 to Q3	32 35	32 35	ns	Figs. 3-1, 3-9
t PHL	Propagation Delay, MR to Qn	40	40	ns	Figs. 3-1, 3-17

AC OPERATING REQUIREMENTS: $V_{CC}=5.0~V,~T_{A}=25^{\circ}C$

SYMBOL	PARAMETER	54/74	54/74LS	UNITS	CONDITIONS
		Min Max	Min Max		
t _w (H)	CP0 Pulse Width HIGH	15	15	ns	Fig. 3-9
t _w (H)	CP1 Pulse Width HIGH	30	30	ns	1 19.00
t _w (H)	MR Pulse Width HIGH	15	15	ns	Fig. 3-17
t _{rec}	Recovery Time, MR to CP	25	25	ns	

92