

74LVX573 Low Voltage Octal Latch with TRI-STATE® Outputs

General Description

The LVX573 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs. The LVX573 is functionally identical to the LVX373 but with inputs and outputs on opposite sides of the package. The Inputs tolerate up to 7V allowing interface of 5V systems to 3V systems.

Features

- Input voltage translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Available in SOIC JEDEC, SOIC EIAJ and SSOP packages
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code: See Section 11

Logic Symbols

Connection Diagram

TL/F/11616-2

Pin Names	Description
D0-D7	Data Inputs
LE	Latch Enable Input
ŌĒ	TRI-STATE Output Enable Input
00-07	TRI-STATE Latch Outputs

	SOIC JEDEC	SOIC EIAJ	SSOP TYPE 1
Order Number	74LVX573M 74LVX573MX	74LVX573SJ 74LVX573SJX	74LVX573MSCX
See NS Package Number	M20B	M20D	MSC20

LVX573

Functional Description

The LVX573 contains eight D-type latches with TRI-STATE® output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE® buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are enabled. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Truth Table

	Inputs	Outputs	
ŌE	LE	D	On
L	н	н	н
L	н	L	L CO
L	L	Х	O ₀
н	X	Х	Z

H = HIGH Voltage

L = LOW Voltage

Z = High Impedance

X = Immaterial

O₀ = Previous O₀ before HIGH-to-LOW transition of Latch Enable

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Rating (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	—20 mA
DC Input Voltage (VI)	-0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_0 = -0.5V$	—20 mA
$V_{O} = V_{CC} + 0.5V$	+ 20 mA
DC Output Voltage (V _O)	$-0.5V$ to V_{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current (I_{CC} or I_{GN}	D) ±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Power Dissipation	180 mW

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DC Electrical Characteristics

Recommended Operating Conditions

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	-40°C to +85°C
Input Rise and Fall Time ($\Delta t / \Delta V$)	0 ns/V to 100 ns/V

				74LVX573 74LVX573							
Symbol	Parameter	v _{cc}	$T_{A} = +25^{\circ}C$		25°C	Т _А −40°С t	 o +85℃	Units	Conditions		
			Min	Тур	Max	Min	Max				
VIH	High Level Input Voltage	nput 3.0				1.5 2.0 2.4		v			
VIL	Low Level Input Voltage	2.0 3.0 3.6	2.4		0.5 0.8 0.8		0.5 0.8 0.8	v			
V _{OH}	High Level Output Voltage	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0		1.9 2.9 2.48		v	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -50 \ \mu A$ $I_{OH} = -50 \ \mu A$ $I_{OH} = -4 \ m A$	
V _{OL}	Low Level Output Voltage	2.0 3.0 3.0		0.0 0.0	0.1 0.1 0.36		0.1 0.1 0.44	v	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 50 \ \mu A$ $I_{OL} = 50 \ \mu A$ $I_{OL} = 4 \ m A$	
loz	TRI-STATE Output Off-State Current	3.6			±0.25		±2.5	μΑ	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND		
lcc	Quiescent Supply Current	3.6			4.0		40.0	μΑ	$V_{IN} = V_{CC} \text{ or GND}$		

Noise Characteristics: See Section 2 for Test Methodology 74LVX573 Vcc Symbol Parameter TA = 25°C Units CL (pF) (V) Тур Limit VOLP v Quiet Output Maximum Dynamic VOL 3.3 0.5 0.8 50 VOLV Quiet Output Minimum Dynamic VOL 3.3 -0.5 -0.8 V 50 3.3 2.0 v 50 VIHD Minimum High Level Dynamic Input Voltage Maximum Low Level Dynamic Input Voltage 3.3 0.8 v 50 VILD

Note: (Input $t_r = t_f = 3$ ns)

AC Electrical Characteristics: See Section 2 for Test Methodology

			74LVX573			74LVX573			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C			T _A = -40°C to +85°C		Units	Conditions
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation	2.7		7.6	14.5	1.0	17.5		C _L = 15 pF
t _{PHL}	Delay Time D _n to O _n	2.1		10.1	18.0	1.0	21.0	ns	C _L = 50 pF
		3.3 ±0.3		5.9	9.3	1.0	11.0		C _L = 15 pF
		3.3 ± 0.3		8.4	12.8	1.0	14.5		C _L = 50 pF
t _{PLH}	Propagation	2.7		8.2	15.6	1.0	18.5	-1- -	C _L = 15 pF
t _{PHL}	Delay Time	2.1		10.7	19.1	1.0	22.0	ns	C _L = 50 pF
	LE to O _n	3.3 ±0.3		6.4	10.1	1.0	12.0		C _L = 15 pF
	3.3 ±0.3	2	8.9	13.6	1.0	15.5		C _L = 50 pF	
		2.7		7.8	15.0	1.0	18.5		$C_{L} = 15 pF, R_{L} = 1 k\Omega$
				10.3	18.5	1.0	22.0	ns	$C_{L} = 50 pF, R_{L} = 1 k\Omega$
		3.3 ±0.3		6.1	9.7	1.0	12.0		$C_{L} = 15 pF, R_{L} = 1 k\Omega$
				8.6	13.2	1.0	15.5		$C_{L} = 50 pF, R_{L} = 1 k\Omega$
t _{PLZ}	TRI-STATE® Output	2.7		12.1	19.1	1.0	22.0		$C_{L} = 50 pF, R_{L} = 1 kG$
^t PHZ	Disable Time	3.3 ±0.3		10.1	13.6	1.0	15.5	ns	$C_{L} = 50 \text{pF}, R_{L} = 1 \text{k}\Omega$
tw	LE Pulse	2.7	6.5			7.5			
	Width	3.3 ±0.3	5.0			5.0		ns	
ts	Setup Time	2.7	5.0			5.0			
	D _n to LE	3.3 ±0.3	3.5			3.5		ns	
t _H	Hold Time	2.7	1.5			1.5			
	D _n to LE	3.3 ±0.3	1.5			1.5		ns	
toshl toslh	Output to Output Skew (Note 1)	2.7			1.5		1.5	ns	C _L = 50 pF

Note 1: Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|.

LVX573

		74LVX573 T _A = +25°C			74L\	Units	
Symbol	Parameter				$T_A = -40^\circ$		
		Min	Тур	Max	Min	Max	
C _{IN}	Input Capacitance		4	10		10	pF
COUT	Output Capacitance		6				pF
C _{PD}	Power Dissipation Capacitance (Note 1)		27				pF

LVX573

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times I_{N} + I_{CC}}{8 \text{ (per latch)}}$

-