Bus Exchange Switch The 7WB383 is an advanced high-speed low-power bus exchange switch in ultra-small footprints. #### **Features** - High Speed: $t_{PD} = 0.25 \text{ ns (Max)} @ V_{CC} = 4.5 \text{ V}$ - 3 Ω Switch Connection Between 2 Ports - Power Down Protection Provided on Inputs - Zero Bounce - TTL-Compatible Control Inputs - Ultra-Small Pb-Free Packages - These are Pb-Free Devices # ON Semiconductor® http://onsemi.com ### **MARKING DIAGRAMS** **UDFN8 MU SUFFIX** CASE 517AJ Micro8™ **DM SUFFIX CASE 846A** UDFN8 1.95 x 1.0 CASE 517CA = Assembly Location = Year W = Work Week = Date Code Μ = Pb-Free Package (Note: Microdot may be in either location) #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. Figure 1. UDFN8 (Top Thru-View) Figure 3. Logic Diagram # **FUNCTION TABLE** | Input OE | Input EX | Function | |----------|----------|--------------| | L | L | A = C; B = D | | L | Н | A = D; B = C | | Н | Х | Disconnect | #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |----------------------|--|------------------------|------| | V _{CC} | DC Supply Voltage | -0.5 to +7.0 | V | | V _{IN} | Control Pin Input Voltage | -0.5 to +7.0 | V | | V _{I/O} | Switch Input / Output Voltage | -0.5 to +7.0 | V | | I _{IK} | Control Pin DC Input Diode Current V _{IN} < GND | -50 | mA | | I _{OK} | Switch I/O Port DC Diode Current V _{I/O} < GND | -50 | mA | | Io | ON-State Switch Current | ±128 | mA | | | Continuous Current Through V _{CC} or GND | ± 150 | mA | | I _{CC} | DC Supply Current Per Supply Pin | ± 150 | mA | | I _{GND} | DC Ground Current per Ground Pin | ± 150 | mA | | T _{STG} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | 260 | °C | | TJ | Junction Temperature Under Bias | 150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance UDFN8 (Note 1) Micro8 | 111
392 | °C/W | | P_{D} | Power Dissipation in Still Air at 85°C UDFN8 Micro8 | 1127
319 | mW | | MSL | Moisture Sensitivity | Level 1 | | | F _R | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | V _{ESD} | ESD Withstand Voltage Human Body Mode (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) | > 2000
> 200
N/A | V | | I _{LATCHUP} | Latchup Performance Above V _{CC} and Below GND at 125 °C (Note 5) | ±200 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow. - 2. Tested to EIA / JESD22-A114-A. - 3. Tested to EIA / JESD22-A115-A. - 4. Tested to JESD22-C101-A. - 5. Tested to EIA / JESD78. # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | Min | Max | Unit | |------------------|------------------------------------|-----------------------------|-------------|---------|------| | V _{CC} | Positive DC Supply Voltage | | 4.0 | 5.5 | V | | V _{IN} | Control Pin Input Voltage | 0 | 5.5 | V | | | V _{I/O} | Switch Input / Output Voltage | | 0 | 5.5 | V | | T _A | Operating Free–Air Temperature | | - 55 | +125 | °C | | Δt/ΔV | Input Transition Rise or Fall Rate | Control Input
Switch I/O | 0
0 | 5
DC | nS/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. # DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | | T _A = 25° | С | T _A
–55°C to | | | |------------------|--|---|-----------------|-----|----------------------|--------|----------------------------|--------|------| | Symbol | Parameter | Conditions | (V) | Min | Тур | Max | Min | Max | Unit | | V _{IK} | Clamp Diode Voltage | $I_{I/O} = -18 \text{ mA}$ | 4.5 | | | -1.2 | | -1.2 | V | | V _{IH} | High-Level Input Voltage (Control) | | 4.0 to
5.5 | 2.0 | | | 2.0 | | V | | V _{IL} | Low-Level Input Voltage (Control) | | 4.0 to
5.5 | | | 0.8 | | 0.8 | V | | V _{OH} | Output Voltage High | See Figure 4 | | | | | | | | | I _{IN} | Input Leakage Current | $0 \le V_{IN} \le 5.5 V$ | 5.5 | | | ± 0.1 | | ±1.0 | μΑ | | I _{OFF} | Power Off Leakage Current | $V_{I/O} = 0 \text{ to } 5.5 \text{ V}$ | 0 | | | ±0.1 | | ±1.0 | μΑ | | lcc | Quiescent Supply Current | I _O = 0,
V _{IN} = V _{CC} or 0 V | 5.5 | | | ± 0.1 | | ±1.0 | μΑ | | Δl _{CC} | Increase in Supply Current (Control Pin) | One input at 3.4 V;
Other inputs at
V _{CC} or GND | 5.5 | | | | | 2.5 | mA | | R _{ON} | Switch ON Resistance | V _{I/O} = 0,
I _{I/O} = 64 mA
I _{I/O} = 30 mA | 4.5 | | 3
3 | 7
7 | | 7
7 | Ω | | | | $V_{I/O} = 2.4,$
$I_{I/O} = 15 \text{ mA}$ | | | 6 | 15 | | 15 | | | | | $V_{I/O} = 2.4,$
$I_{I/O} = 15 \text{ mA}$ | 4.0 | | 10 | 20 | | 20 | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. # **AC ELECTRICAL CHARACTERISTICS** | | | | V _{CC} | 7 | T _A = 25 °C | | T _A =
-55°C to +125°C | | | | |----------------------|-------------------------------|----------------------------|-----------------|-----|------------------------|------|-------------------------------------|------|------|--| | Symbol | Parameter | Test Condition | (V) | Min | Тур | Max | Min | Max | Unit | | | t _{PD} | Propagation Delay, Bus to Bus | See Figure 5 | 4.0 to
5.5 | | | 0.25 | | 0.25 | ns | | | t _{PD-EX} | Propagation Delay, EX to Bus | See Figure 5 and Figure 6 | 4.0 to
5.5 | | | 4.5 | | 4.5 | ns | | | t _{EN} | Output Enable Time | See Figure 5 | 4.5 to
5.5 | 0.8 | 2.5 | 4.2 | 0.8 | 4.2 | ns | | | | | | 4.0 | 0.8 | 3.0 | 4.6 | 0.8 | 4.6 | | | | t _{DIS} | Output Disable Time | | 4.5 to
5.5 | 0.8 | 3.0 | 4.8 | 0.8 | 4.8 | ns | | | | | | 4.0 | 0.8 | 2.9 | 4.4 | 0.8 | 4.4 | | | | C _{IN} | Control Input Capacitance | V _{IN} = 5 or 0 V | 5.0 | | 2.5 | | | | pF | | | C _{IO(ON)} | Switch On Capacitance | Switch ON | 5.0 | | 10 | | | | pF | | | C _{IO(OFF)} | Switch Off Capacitance | Switch OFF | 5.0 | | 5 | | | | pF | | # **TYPICAL DC CHARACTERISTICS** Figure 4. Output Voltage High vs Supply Voltage #### **AC LOADING AND WAVEFORMS** | Test | S 1 | |------------------------------------|------------| | t _{PD} | Open | | t _{PLZ} /t _{PZL} | 7 V | | t _{PHZ} /t _{PZH} | Open | ^{*}C_L includes probes and jig capacitance. # Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times - 6. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control - 7. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , t_{f} \leq 2.5 ns, t_{f} \leq 2.5 ns. - 8. The outputs are measured one at a time, with one transition per measurement. - 9. t_{PLZ} and t_{PHZ} are the same as t_{DIS} . - $10.t_{PZL}$ and t_{PZH} are the same as t_{EN} . - 11. t_{PHL} and t_{PLH} are the same as t_{PD}. Figure 5. PD, tEN, tDIS Loading and Waveforms # **ORDERING INFORMATION** | Device | Package | Shipping [†] | | |--------------|--|-----------------------|--| | 7WB383MUTAG | UDFN8
(Pb-Free) | 3000 / Tape & Reel | | | 7WB383DMR2G | Micro8
(Pb-Free) | 4000 / Tape & Reel | | | 7WB383DMUTCG | UDFN8, 1.95 x 1.0, 0.5 mm Pitch
(Pb-Free) | 3000 / Tape & Reel | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### PACKAGE DIMENSIONS ### **UDFN8 1.8 x 1.2, 0.4P** CASE 517AJ **ISSUE O** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP. 4. MOLD FLASH ALLOWED ON TERMINALS ALONG EDGE OF PACKAGE, FLASH MAY NOT EXCEED 0.03 ONTO BOTTOM SURFACE OF TERMINALS. 5. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS. | | MILLIMETERS | | | | | | |-----|-------------|------|--|--|--|--| | DIM | MIN | MAX | | | | | | Α | 0.45 | 0.55 | | | | | | A1 | 0.00 | 0.05 | | | | | | A3 | 0.127 | REF | | | | | | b | 0.15 0.25 | | | | | | | b2 | 0.30 | REF | | | | | | D | 1.80 | BSC | | | | | | Е | 1.20 | BSC | | | | | | е | 0.40 | BSC | | | | | | L | 0.45 0.55 | | | | | | | L1 | 0.00 0.03 | | | | | | | L2 | 0.40 REF | | | | | | #### **MOUNTING FOOTPRINT* SOLDERMASK DEFINED** DIMENSIONS: MILLIMETERS ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **PACKAGE DIMENSIONS** UDFN8 1.95x1.0, 0.5P CASE 517CA ISSUE O - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. 4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH. | | MILLIMETERS | | | | | | | |-----|-------------|------|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | Α | 0.45 | 0.55 | | | | | | | A1 | 0.00 | 0.05 | | | | | | | A3 | 0.13 | REF | | | | | | | b | 0.15 | 0.25 | | | | | | | D | 1.95 | BSC | | | | | | | E | 1.00 | BSC | | | | | | | е | 0.50 BSC | | | | | | | | L | 0.25 0.35 | | | | | | | | L1 | 0.30 | 0.40 | | | | | | #### **RECOMMENDED SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS Micro8™ CASE 846A **ISSUE H** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - DIMENSIONING MULT OLD ANY UNITED ANY UNITED AND THE JOB J. 1992. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. SHALL NOT EXCEED 0.15 (0.006) PER SIDE. - DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - 846A-01 OBSOLETE, NEW STANDARD 846A-02. | | MILLIMETERS | | | INCHES | | | | |-----|-------------|----------|------|--------|-----------|-------|--| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | | Α | | | 1.10 | | | 0.043 | | | A1 | 0.05 | 0.08 | 0.15 | 0.002 | 0.003 | 0.006 | | | b | 0.25 | 0.33 | 0.40 | 0.010 | 0.013 | 0.016 | | | С | 0.13 | 0.18 | 0.23 | 0.005 | 0.007 | 0.009 | | | D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | | E | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | | е | | 0.65 BSC | | | 0.026 BSC |) | | | L | 0.40 | 0.55 | 0.70 | 0.016 | 0.021 | 0.028 | | | HE | 4.75 | 4.90 | 5.05 | 0.187 | 0.193 | 0.199 | | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Micro8 is a trademark of International Rectifier. ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on yorducts herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative