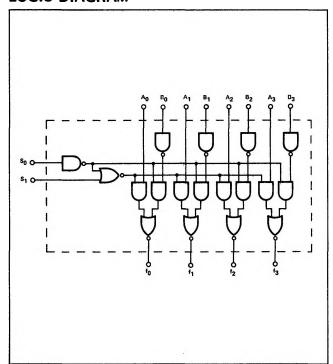
8266 8267

REFER TO PAGE 15 FOR B, E AND R PACKAGE PIN CONFIGURATIONS.

DIGITAL 8000 SERIES TTL/MSI

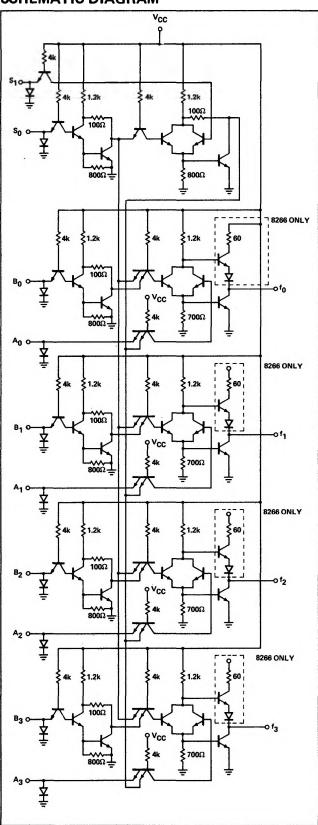
DESCRIPTION


The 8266/8267 2-Input, 4-Bit Digital Multiplexer is a monolithic array utilizing familiar TTL circuit structures. The 8267 features a bare-collector output to allow expansion with other devices.

The multiplexer is intended for use at the inputs to adders, registers and in other parallel data handling applications.

The multiplexer is able to choose from two different input sources, each containing 4 bits: $A = (A_0, A_1, A_2, A_3)$, $B = (B_0, B_1, B_2, B_3)$. The selection is controlled by the input S₀, while the second control input, S₁, is held at zero.

For conditional complementing, the two inputs (A_n, B_n) are tied together to form the function TRUE/COMPLE-MENT, which is needed in conjunction with added elements to perform ADDITION/SUBTRACTION. Further, the inhibit state $S_0 = S_1 = 1$ can be used to facilitate transfer operations in an arithmetic section.


LOGIC DIAGRAM

TRUTH TABLE

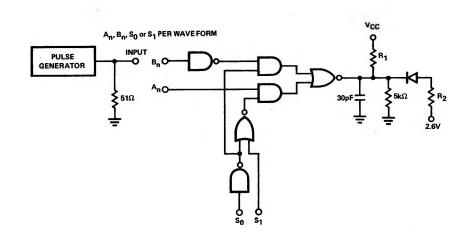
SELEC	T LINES	OUTPUTS
S ₀	S ₁	f _n (0, 1, 2, 3)
0	0	B _n
0	1	Bn
1	0	Ān
1	1	1

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS			TEST CONDITIONS					NOTES	
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	A _n	B _n	s ₀	S ₁	OUTPUTS	
"1" Output Voltage (8266)	2.6	3.5		v	0.8V	2.0V	0.8V	0.8V	-800µA	7
"0" Output Voltage			0.40	V	2.0V	2.0∨	2.0V	0.8∨	16mA	8
"1" Output Leakage Current (8267)		İ	25	μА	0.6V	2.0V	2.0V	0.8∨		10
"0" Input Current		}				}				-
A _n , B _n	-0.1		-1.6	mA	0.4V	0.4V	ov	ov		
s ₀ , s ₁	-0.1		-1.6	mA			0.4∨	0.4V		
"1" Input Current										
A _n , B _n		}	40	μА	4.5V	4.5V		2.0V		
s ₀ , s ₁			40	μА			4.5V	4.5V		
Input Voltage Rating										
S ₀ , A _n , B _n	5.5			v	10mA	10mA	10mA	2. 0 V		11
s ₁	5.5			v	10)	:	2.0V	10mA		11
Output Short Circuit										
Current (8266)	-20	1	-70	mA					0∨	

 $T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

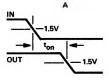

Q114 D 4 QD D 10 D 1		LIMITS			TEST CONDITIONS					
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	A _n	B _n	s _o	s ₁	OUTPUTS	NOTES
Propagation Delay (8266)										
S ₀ to f _n (short path)		18	28	ns						9
S ₀ to f _n (long path)		20	30	ns				X.		9
A _n to f _n		13	25	ns						9
B _n , S ₁ to f _n		14	25	ns						9
Propagation Delay (8267)										
S_0 to f_n		27	36	ns					· &-	9
A _n to f _n		15	25	ns	,					9
B _n , S ₁ to f _n		21	28	ns						9
S ₀ to f _n (short path)		18	28	ns						9
Power/Current Consumption		200/ 38.1	275/ 52.4	mW/ mA	4.5V	0∨	4.5V	0∨		13

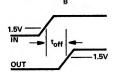
NOTES:

- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically
- All measurements are taken with ground pin tied to zero volts.
- 3. Positive current flow is defined as into the terminal referenced.
- 4. Positive NAND logic definition:
- "UP" Level = "1", "DOWN" Level = "0".

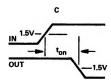
 5. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- Measurements apply to each gate element independently,
- 7. Output source current is supplied through a resistor to ground.
- 8. Output sink current is supplied through a resistor to V_{CC}.
- 9. Refer to AC Test Figure.
- Connect an external 1k ± 1% resistor from V_{CC} to the output for this test.
- This test guarantees operation free of input latch-up over the specified operating supply voltage range.
- 12. Manufacturer reserves the right to make design and process changes and improvements.
- 13. $V_{CC} = 5.25 \text{ volts.}$

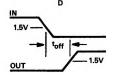
AC TEST FIGURE AND WAVEFORMS

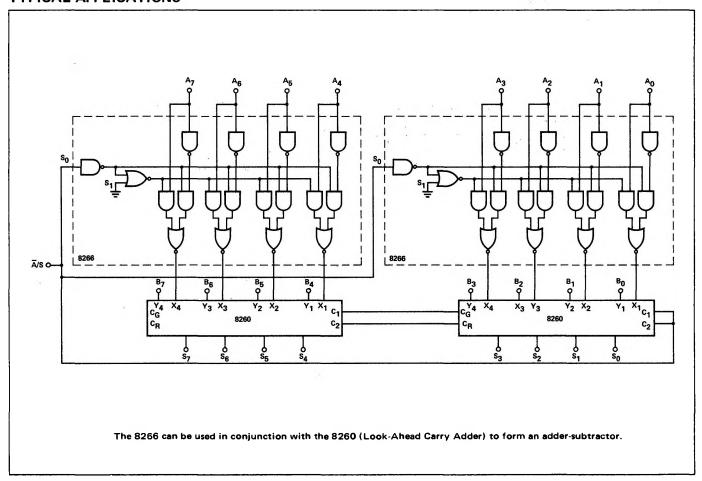



1		8266	8267
	R ₁	∞	330Ω
	R ₂	84.5Ω	470Ω

NON-INVERTING PATHS







INVERTING PATHS

TYPICAL APPLICATIONS

