10-BIT SERIAL-IN, PARALLEL-OUT 8273 SHIFT REGISTER

DESCRIPTION

The 8273, 10-Bit Shift Register is an array of binary elements interconnected to perform the serial-in, parallel-out shift function. This device utilizes a common buffered reset and operates from either a positive or negative edge clock pulse. Clock 1 is triggered by a negative going clock pulse and Clock 2 is triggered by a positive going clock pulse. The unused clock input performs the inhibit function. The circuit configuration is arranged as a single serial input register with ten true parallel outputs.

DIGITAL 8000 SERIES TTL/MSI

TRUTH TABLE

INPUT	RESET	CLOCK 1	CLOCK 2	Q _n + 1
1	1	Pulse	0	1
0	1	Pulse	0	0
1	1	1	Pulse	1
0	1	1	Pulse	0
1	1	Pulse	1	٥
0	1	Pulse	1	Q
1	1	0	Pulse	Q
0	1	0	Pulse	٥

NOTE: The unused clock input performs the INHIBIT function. **RESET** = $0 \Rightarrow Q = 0$

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS	LIMITS				TEST CO					
	MIN.	TYP.	MAX.	UNITS	"D" INPUT	CLOCK 1	CLOCK 2	RESET	OUTPUTS	NOTES
"1" Output Voltage	2.6	3.4		v	2.0V	Pulse	0.8V		-500µA	6
"0" Output Voltage		0.2	0.4	v	0.8V	Pulse	0.8V		9.6mA	7
"0" Input Current										
"D" Input	-0.1		-1.6	mA	0.4V					
Clock 1	-0.1		-1.6	mA		0.4V				
Clock 2	-0.1		-1.6	mA			0.4V			
Reset	-0.1		-1.6	mA				0.4V		
"1" Input Current										
"D" Input			40	μA	4.5V					
Clock 1			40	μA		4.5V				
Clock 2			40	μA			4.5V			
Reset			40	μA				4.5V		
Input Voltage Rating (All Inputs)	5.5			v	10mA	10mA	10mA	10mA		

SIGNETICS DIGITAL 8000 SERIES TTL/MSI - 8273

$T_A = 25^\circ C$ and $V_{CC} = 5.0V$

CHARACTERISTICS	LIMITS			TEST CONDITIONS						
	MIN.	TYP.	MAX.	UNITS	"D" INPUT	CLOCK 1	CLOCK 2	RESET	OUTPUTS	NOTES
Max. Data Transfer Rate	25	35		MHz						
Turn-On Delay		ļ								
Clock 1 to Output		32	40	ns			0.0V	4.5V		
Clock 2 to Output		28	40	ns				4.5V		
Reset to Output		35	50	ns		4.5V				
Turn-Off Delay		ļ								
Clock 1 to Output		25	40	ns			0.0V			
Clock 2 to Output		19	40	ns		4.5V				
Clock Pulse Width										
Clock 1		16	25	ns			0.0V			
Clock 2		12	20	ns		4.5V				
Set-Up Time (t _{set-up})										
Clock 1			15	ns			0.0V			
Clock 2			10	ns	1	4.5V				
Hold Time (t _{hold})										
Clock 1			15	ns	I		0.0V			
Clock 2			10	ns		4.5V				
Power Consumption			540	mW	ļ					8
Short Circuit Output Current	-20		-70	mA						
Input Voltage Rating				1						
(All Inputs)	5.5		1	v	10mA	10mA	10mA	10mA		

NOTES:

- 1. All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
- 2. All measurements are taken with ground pin tied to zero volts.
- 3. Positive current flow is defined as into the terminal referenced.
- Positive logic definition: "UP" Level = "1", "DOWN" Level = "0".
- 5. Precautionary measures should be taken to ensure current

AC TEST FIGURE AND WAVEFORMS

limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.

- 6. Output source current is supplied through a resistor to ground.
- 7. Output sink current is supplied through a resistor to V_{CC}. 8. V_{CC} = 5.25V.
- 9. Manufacturer reserves the right to make design and process changes and improvements.
- 10. See AC Test Figure.

