

256-BIT BIPOLAR PROGRAMMABLE ROM (32×8 PROM) (82S23 OPEN COLLECTOR)(82S123 TRI-STATE)

82S23 82S123

OBJECTIVE SPECIFICATION

DESCRIPTION

The 82S23 (open Collector Outputs) and the 82S123 (Tristate Outputs) are Bipolar 256 Bit Read Only Memories organized as 32 words by 8 bits per word. They are Field-Programmable, which means that custom patterns are immediately available by following the simple fusing procedure given in this data sheet. A chip enable line is provided and the outputs are bare collector or Tristate to allow for memory expansion capability.

The 82S23 and 82S123 are fully TTL compatible and include on-the-chip decoding, Typical access time is 25 nS.

The standard 82S23 and 82S123 are supplied with all outputs at a logical "0." If a programmed unit is required the Truth Table/Order Blank on page 4-43 of the TTL MSI/ Memory Handbook may be used.

LOGIC DIAGRAM

DIGITAL 8000 SERIES TTL/MEMORY

FEATURES

- PNP INPUTS
- BUFFERED ADDRESS LINES
- ON THE CHIP DECODING
- A CHIP ENABLE LINE
- OPEN COLLECTOR OR TRISTATE OUTPUTS
- DIODE PROTECTED INPUTS
- NO SEPARATE "FUSING" PINS
- BOARD PROGRAMMABLE

APPLICATIONS

- PROTOTYPING
- VOLUME PRODUCTION
- MICROPROGRAMMING
- HARDWIRED ALGORITHMS
- CONTROL STORE

INPUT/OUTPUT SCHEMATIC DIAGRAMS

DIGITAL 8000 SERIES TTL/MEMORY = 82S23/82S123

CHARACTERISTICS	LIMITS				TEAT CONDITIONS	NOTES
	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	NOTES
"0" Output Voltage				v	I _{out} = 20mA	
"1" Output Leakage			40-	μΑ	CE = "1" V _{out} = 2.6V	
82523			100	μΑ	CE = "0"V _{out} =2.6V_After Fusing	
825123	-40		+40	μΑ	$V_{out} = 0.5V/V_{out} = 2.4V,$ CE = "1"	
"1" Output Current 82S123	- 2.0			mA	V _{out} = 2.4V, CE = "0"	After Fusing
"0" Input Current			250	μΑ	V _{in} = 0.5∨	
"1" Input Current			50	μΑ	V _{in} = 2.7V	
Input Threshold Voltage						
"0" Level	.80			v		
"1" Level			2.0	v		
Propagation Delay						
Address to Output		25	40	ns		
Enable to Output		15	35	ns		
Input Clamp Voltage	- 1.0			v	I _{in} = 5.0mA	
Power Consumption]	V _{cc} = 5,00∨	
82523		80/400	100/500	mA/mW		
82\$123		80/400	100/500	mA/mW		

OBJECTIVE ELECTRICAL CHARACTERISTICS (T_A = 25° C and V_{CC} = 5.0V)

NOTES:

- All voltage measurements are referenced to the ground term-1. inal. Terminals not specifically referenced are left electrically open.
- 2. All measurements are taken with ground pin tied to zero volts.
- 3. 4.
- Positive logic definition: "UP" Level = "1" "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings 5. should the isolation diodes become forward biased. Output sink current is supplied through a resistor to $V_{CC}. \label{eq:constraint}$
- 6.
- One DC fan-out is defined as 0.8 mA. One AC fan-out is defined as 50 pF. 7.
- 8.
- 9. Manufacturer reserves the right to make design and process 10.
- changes and improvements. By DC tests per the truth table, all inputs have guaranteed thresholds of 0.8V for logical "0" and 2.0V for logical "1". This test guarantees operation free of input latch-up over the specified operating power supply voltage range. 11.

- For detailed conditions, see AC testing. Connect an external 1K resistor from V_{CC} to the output terminal for this test.

OBJECTIVE FUSING PROCEDURE

The 82S23/82S123 standard part is shipped with all outputs at Logical "0". To write a Logical "1" proceed as follows: GND Pin 8 and apply 5V to V_{CC}, Pin 16. 1.

- 2. Remove any load from the outputs.
- 3. Ground the Chip Enable.
- 4. Address the desired location by applying ground for a "0" and 5.0 \pm 0.25V for a "1" at the address input lines.
- 5. Raise V_{CC} to $10.0V \pm 0.5V$.
- 6. Apply 65 ±3 mA to the output to be programmed to logic "1". (The voltage will be between 12 to 18V until fused, and must be clamped at 20.0V max.)
- 7. Release fusing current.
- 8. Reduce V_{CC} to 5.0V.
- 9. Proceed to the next output and repeat, or change address and repeat procedure.
- 10. Continue until the entire bit pattern is programmed into your custom 82S23/82S123.

NOTE:

After 1.0 SEC of programming, a 25% duty cycle on power must be imposed to avoid over heating.

4-28

- 12. 13.
- 14. V_{CC} = 5.25V.

AC TEST FIGURE AND WAVEFORMS

FUNCTIONAL DIAGRAM

