CRC GENERATOR/CHECKER

OBJECTIVE SPECIFICATION

DESCRIPTION

The CRC Generator/Checker circuit is used to provide an error detection capability for serial digital data handling system. The serial data stream is divided by a selected polynomial and the division remainder is transmitted at the end of the data stream, as a Cyclic Redundancy check character (CRCC). When the data is received, the same calculation is performed. If the received message is error-free, the calculated remainder should satisfy a predetermined pattern. In most cases, the remainder is zero except in the case where Synchronous Data Link Control type protocols are used whereby the correct remainder is checked for 1111000010111000 (x0 - x15)

8 polynomials are provided and can be selected via a 3-bit control bus. Popular polynomials such as CRC-16 and CCITT are implemented. Polynomials can be programmed to start with either all zeros or all ones.

Automatic right justification for polynomials of degree less than 16 is provided.

FUNCTIONAL DESCRIPTION

The CRC Generator/Checker circuit provides a means of detecting errors in a serial data communications environment. A binary message can be interpreted as a binary polynomial H(x). This polynomial can be divided by a generator polynomial P(x)such that H(x) = P(x) Q(x) + R(x) whereby Q(x) is the quotient and P(x) is the remainder. During transmission, the remainder is appended to the end of the message as check bits. For a given message, a unique remainder is generated. Hardware implementation of division is simply a feedback shift register with Exclusive-OR gating. Subtraction and addition in modulo 2 is implemented by the Exclusive-OR function. The number of shift register stages is equal to the degree of the divisor polynomial.

Table 1 shows the polynomials implemented in the CRC circuit. Each polynomial can be selected via the 3-bit polynomial control inputs S_0 , S_1 and S_2 . To generate the check bits, the data stream is entered via the Data (D) input, using the high to low transition of the Clock (CP) input. This data is gated with the most significant output (Q) of the register, and controls the exclusive OR gates. The Check Word Enable (CWE) must be held high while the data is being entered. After the last data bit is entered, the CWE is brought low and the check bits are shifted out of the register and appended to the data bits using external gating.

FEATURES

- I²L technology
- TTL inputs/outputs
- 10MHz (max) data rate
- Total power dissipation = 175mw (max)
- V_{CC} = 5.0V
- V_{JJ} = 1.0V
- Separate preset and reset controls
- SDLC specified pattern match
- Automatic right justification

TYPICAL APPLICATIONS

- Floppy and other disc systems
- · Digital cassette and cartridge systems
- Data communication systems

To check an incoming message for errors, both the data and check bits are entered through the D input with the CWE input held high. The 8X01 is not in the data path. but only monitors the message. The Error output becomes valid after the last check bit has been entered into the 8X01 by a high to low transition of CP. If no detectable errors have occurred during the data transmission, the resultant internal register bits are all low and the Error output (ER) is low. If a detectable error has occurred, ER is high. ER remains valid until the next high to low transition of CP or until the device has been preset or reset. PME must be high if ER output is used to reflect all zero result.

For data communications using the Synchronous Data Link Control protocol (SDLC), the 8X01 is first preset to all ones before any accumulation is done. This applies to both transmitter and receiver.

A special pattern of 1111000010111000 ($x^0 - x^{15}$) is used in place of all zeros during receiving for valid message check. PME is incorporated to select this option. If PME is low during the last bit time of the message, ER output is low if result matches this special pattern. When ER is high, error has occurred.

PIN CONFIGURATION

PIN DESIGNATION

PIN NO.	FUNCTION
S ₀ , S ₁ , S ₂	Polynominal Select inputs
D	Data input
CP	Clock (operates on high to low transition) input
CWE	Check Word Enable
P	Preset (active low) input
MR	Master Reset (active high) input
Q	Data output
ER	Error (active high) output
PME	Pattern match enable (active low)

A high level on the Master Reset (MR) input asynchronously clears the register. A low level on the Preset (P) input asynchronously sets the entire register if the control code inputs specify a 16-bit polynomial; in the case of the 12 or 8-bit check polynomials only the most significant 12 or 8 register bits are set and the remaining bits are cleared.

For SDLC, the user must invert the check sum shifted out of the 8X01.

RECOMMENDED OPERATING CONDITIONS

PARAMETER		LIMITS			UNIT	
		Min	Тур	Max	U.I.I	
۱ ^{۱۱} ۸CC	Supply voltage Supply current	4.75 40	5.0	5.25 100	V mA	
CP	Clock input	0		5	MHz	

8X01-A,F

8X01

CRC GENERATOR/CHECKER

OBJECTIVE SPECIFICATION

TRUTH TABLE

SE	SELECT CODE S ₂ S ₁ S ₀			
S ₂			POLYNOMIAL	REMARKS
L	L	L	$\chi^{16}_{+\chi^{15}_{+\chi^2_{+1}}}$	CRC-16
L	L	н	X ¹⁶ +X ¹⁴ +X+1	CRC-16 REVERSE
L	н	L	$X^{16}+X^{15}+X^{13}+X^7+X^4+X^2+X^{1}+1$	
L	н	н	$\chi_{12+\chi_{11+\chi_{3+\chi_{2+\chi_{11}}}}$	CRC-12
н	L	L	x ⁸ +x ⁷ +x ⁵ +x ⁴ +x+1	
н	L	н	X ⁸ +1	LRC-8
н	н	L	$x^{16}+x^{12}+x^{5}+1$	CRC-CCITT
н	н	н	X ¹⁶ +X ¹¹ +X ⁴ +1	CRC-CCITT REVERSE

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

(Unless Otherwise Noted)

	DADAMETED		LIMITS				
PARAMETER		TEST CONDITIONS	Min	Тур	Max	UNIT	
VIH	Input high voltage		2.0			v	
VIL	Input low voltage				0.8	v	
٧ _{IC}	Input clamp diode voltage	V_{CC} = MIN, I_{IN} = -18mA			-1.5	V	
۷он	Output high voltage	V _{CC} = MIN, I _{OH} = -400μA, I _{JJ} = MIN	2.7			v	
VOL	Output low voltage	V _{CC} = MIN, I _{OL} = 8mA, I _{JJ} = MIN			0.5	V	
4L	Input low current	V _{CC} = MAX, V _{IN} = 0.4V			-0.36	mA	
ін	Input high current	V_{CC} = MAX, V_{IN} = 2.7V			20	μA	
ЧН	Max. input current	V _{CC} = MAX			0.1	mA	
los	Output short circuit current	_{CC} = MAX, VOUT = OV, I _{JJ} = MIN	-10		-42	mA	
	Supply current	V _{CC} = MAX, inputs open	10		18	mA	
ມັ	Injection current	V _{CC} = MAX, inputs open	60	1	100	mA	

TEST CIRCUIT

INPUT/OUTPUT CIRCUITS

8X01

I²L INJECTOR CURRENT SOURCE

OBJECTIVE SPECIFICATION

8X01-A,F

8X01

AC ELECTRICAL CHARACTERISTICS

	70		TEST CONDITIONS	LIMITS			UNIT
PARAMETER	то	FROM	1EST CONDITIONS	Min	Тур	Max	GIAIT
fmax Maximum clock frequency Pulse width				5	7		MHz ns
t _w CP(L) Clock low t _w P(L) Preset low t _w MR(H) Master reset high			See Figure 2 See Figure 3 See Figure 4	100 120 150			·
Setup and hold time t _S D Setup time t _S CWE Setup time t _n Hold time	Clock Clock Clock	Data CWE Data, CWE	See Figure 5	0	120 75 -30	150 100 0	ns
Propagation delay ^t PLH Low to high ^t PHL High to low ^t PLH Low to high	Data output	Clock, preset	See Figures 1,2,3		100	160	ns
tPHL High to low tPLH Low to high tPHL High to low	Data output Error output	MR Clock, MR, preset	See Figure 4 See Figures 2,3,4		75 150	100 200	
tREC Recovery time	Clock	MR, preset	See Figures 3,4		60	90	ns

VOLTAGE WAVEFORMS

signetics