

Current-Output Parallel-Input, 16-/14-Bit DAC AD5546/AD5556

Preliminary Technical Data

FEATURES

16-bit Resolution AD5546 14-bit Resolution AD5556 ± 1 LSB DNL ± 1 or ± 2 LSB INL Low Noise $12nV/\sqrt{Hz}$ Low Power, $I_{DD}=10\mu A$ 0.5 μ s Settling Time Built-in R_{FB} Facilitates Voltage Conversion Built-in 4-Quadrant Resistors Allow 0 to 10V, 0 to -10V, or +/-10V Outputs 2mA Full Scale Current $\pm 20\%$, with V_{RFF}=10V

Compact TSSOP-28 Packages

APPLICATIONS Automatic Test Equipment Instrumentation Digitally Controlled Calibration Digital Waveform Generation

GENERAL DESCRIPTION

The AD5546/AD5556 are precision 16/14-bit, low power, currentoutput, parallel input digital-to-analog converters. They are designed to operate from single +5V supply with \pm 10V multiplying reference for 4-Quadrant outputs.

The built-in 4-Quadrant resistors facilitate the resistance matching and temperature tracking that minimize the numbers of components needed for Multi-Quadrant applications. In addition, the feedback resistor (R_{FB}) also simplifies the I-V conversion with an external buffer.

The AD5546/AD5556 are packaged in compact TSSOP-28 package and the operating temperature ranges from -40° C to $+85^{\circ}$ C.

Figure 1. 16/14-Bit 4-Quadrant Multiplying DAC with Minimum of External Components

Pr D April 08 '03

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD5546/AD5556

ELECTRICAL CHARACTERISTICS at V_{DD} = 5V±10%, V_{SS} = 0V, I_{OUT} = Virtual GND, GND=0V, V_{REF} = 10V, T_A = Full Operating temperature

Range, unless otherwise noted.				
PARAMETER	SYMBOL	CONDITION	5V±10%	UNITS
STATIC PERFORMANCE ¹				
Resolution	Ν	$1 \text{ LSB} = V_{\text{REF}}/2_{14}^{16} = 153 \mu \text{V}$ when $V_{\text{REF}} = 10 \text{V}$ AD5546	16	Bits
Resolution	Ν	$1 \text{ LSB} = V_{\text{REF}}/2^{14} = 610 \mu \text{V}$ when $V_{\text{REF}} = 10 \text{V}$ AD5556	14	Bits
Relative Accuracy	INL	Grade: AD5556C	±1	LSB max
Relative Accuracy	INL	Grade: AD5546B	±2	LSB max
Differential Nonlinearity	DNL	Monotonic	±1	LSB max
Output Leakage Current	I _{OUT}	Data = $0000_{\rm H}$, T _A = 25°C	10	nA max
Output Leakage Current	I _{OUT}	$Data = 0000_{\rm H}, T_{\rm A} = T_{\rm A} MAX$	20	nA max
Full-Scale Gain Error	G _{FSE}	$Data = FFFF_{H}$	±1/±4	mV typ/max
Full-Scale Tempco ²	TCV _{FS}		1	ppm/°C typ
REFERENCE INPUT				
V _{REF} Range	V_{REF}		-12/+12	V min/max
REF Input Resistance	REF		5	k ohm typ ⁴
R1, R2 Resistance	$R_{1,}R_{2}$		10	k ohm typ ⁴
Feedback and Offset Resistanc			10	k ohm typ ⁴
Input Capacitance ²	C _{REF}		5	pF typ
ANALOG OUTPUT				
Output Current	I _{OUT}	$Data = FFFF_{H}$	2	mA typ
Output Capacitance ²	C _{OUT}	Code Dependent	200	pF typ
LOGIC INPUTS & OUTPUT				
Logic Input Low Voltage	V_{IL}		0.8	V max
Logic Input High Voltage	V_{IH}		2.4	V min
Input Leakage Current	I_{IL}		10	μA max
Input Capacitance ²	C _{IL}		10	pF max
INTERFACE TIMING ^{2,3}				
Data to \overline{C} Setup Time	t _{DS}		25	ns min
Data to \overline{WR} Hold Time	t _{DH}		0	ns min
WR Pulse Width	t _{WR}		25	ns min
LDAC Pulse Width	t _{LDAC}		25	ns min
Reset Pulse Width	t _{RS}		25	ns min
\overline{WR} to LDAC Delay Time	t_{LWD}		0	ns min
SUPPLY CHARACTERIST	ICS			
Power Supply Range	V _{DD RANGE}		4.5/5.5	V min/max
Positive Supply Current	I _{DD}	Logic Inputs = $0V$	10	μA max
Power Dissipation	_		0.055	** 7
	P _{DISS}	Logic Inputs = 0V	0.055	mW max

NOTES:

All static performance tests (except I_{OUT}) are performed in a closed loop system using an external precision OP177 I-to-V converter amplifier. The AD5546 R_{FB} terminal is tied to the amplifier output. The opamp +IN is grounded and the DAC I_{OUT} is tied to the opamp –IN. Typical values represent average readings measured at 25°C

These parameters are guaranteed by design and not subject to production testing.

3. All input control signals are specified with $t_R = t_F = 2.5$ ns (10% to 90% of +3V) and timed from a voltage level of 1.5V.

4. All AC Characteristic tests are performed in a closed loop system using an AD841 I-to-V converter amplifier.

AD5546/AD5556

ELECTRICAL CHARACTERISTICS at V_{DD} = 5V±10%, I_{OUT} = Virtual GND, GND=0V, V_{REF} = 10V,

T _A = Full Operating Temperature Range, unless otherwise noted.							
PARAMETER	SYMBOL	CONDITION	5V±10%	UNITS			
AC CHARACTERISTICS ⁴							
Output Voltage Settling Time	ts	To $\pm 0.1\%$ of Full Scale, Data = 0000_{H} to FFFF_{H} to 0000_{H}	0.5	μs typ			
Reference Multiplying BW	BW	$V_{REF} = 5V_{P-P}$, Data = FFFF _H	4	MHz typ			
DAC Glitch Impulse	Q	$V_{REF} = 0V$, Data 0000_{H} to 8000_{H} to 0000_{H}	7	nV-s typ			
Feed Through Error	V_{OUT}/V_{REF}	$Data = 0000_{H}, V_{REF} = 100 mVrms$, same channel	-65	dB			
Digital Feed Through	Q	\overline{WR} = 1, LDAC =1, and f_{CLK} = 1MHz	7	nV-s typ			
Total Harmonic Distortion	THD	$V_{REF} = 5V_{P-P}$, Data = FFFF _H , f=1KHz	-85	dB typ			
Output Spot Noise Voltage	e _N	f = 1 kHz, BW = 1Hz	12	nV/ rt Hz			

NOTES:

All static performance tests (except I_{OUT}) are performed in a closed loop system using an external precision OP177 I-to-V converter amplifier. The AD5546 R_{FB} terminal is tied to the amplifier output. The opamp +IN is grounded and the DAC I_{OUT} is tied to the opamp –IN. Typical values represent average readings measured at 25°C. These parameters are guaranteed by design and not subject to production testing. All input control signals are specified with $R = t_F = 2.5ns (10\% \text{ to } 90\% \text{ of } +3V)$ and timed from a voltage level of 1.5V. 1.

2.

3.

4. All AC Characteristic tests are performed in a closed loop system using an AD841 I-to-V converter amplifier.

AD5546/AD5556

ABSOLUTE MAXIMUM RATINGS

V_{DD} to GND0.3V, +8V
R _{FB} , R _{OFS} , R ₁ , R _{COM} , and REF to GND18V, 18V
Logic Inputs to GND0.3V, +8V
$V(I_{OUT})$ to GND0.3V, V_{DD} + 0.3V
Input Current to Any Pin except Supplies±50mA
Package Power Dissipation $(T_J MAX - T_A)/THETA_{JA}$
Thermal Resistance THETA _{JA} 128°C
Maximum Junction Temperature (T _J MAX)150°C
Operating Temperature Range
Models B, C -40° C to $+85^{\circ}$ C
Storage Temperature Range65°C to +150°C
Lead Temperature:
Vapor Phase, 60 secs+215°C
Infrared, 15 secs+220°C

Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION

TSSOP-28

PIN DESCRIPTION

	Lo of the from	
PIN#	Name	Function
1-8	D7 to D0 Digital Inpu	ut Data Bits D7 to D0
9	R _{OFS}	Bipolar Offset Resistor
10	R _{FB}	Internal matching Feedback Resistor. Connects to external opamp output for I-V conversion.
11	R ₁	4-Quandrant Resistor R1.
12	R _{COM}	Reference Input and 4-Quadrant Resistor R2.
13	REF	DAC reference input pin. Establishes DAC full-scale voltage. Constant input resistance versus code.
14	I _{OUT}	DAC current-output. Connects to inverting terminal of external precision I to V opamp for voltage output.
15	LDAC	Digital Input Load DAC Control.
16	WR	Write control digital input in active low. Transfers shift-register data to DAC register on rising edge.
17	MSB	Power On Reset State. MSB=0 resets at zero-scale, MSB=1 resets at mid-scale.
18	RS	Reset. Resets to zero-scale if MSB=0 and resets to mid-scale if MSB=1
19	GND	Analog and Digital Grounds.
20-27	D15 to D8	Digital Input Data Bits D15 to D8
28	V _{DD}	Positive power supply input. Specified range of operation $+5V \pm 10\%$.

ORDERING GUIDE

Model	RES	DNL	INL	TEMP	Package	Package
	(Bit)	(LSB)	(LSB)		Description	Option
AD5546BRU	16	±1	±2	-40 / +85°C	TSSOP-28	RU-28
AD5556CRU	14	±1	±1	-40 / +85°C	TSSOP-28	RU-28
	4 (4 4)		77.04 ¹¹ 8080 ¹¹			

The AD5546 contains 1624 transistors. The die size measures 62 mil X 94 mil, 5828 sq mil.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5546/AD5556 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 2. AD5546/AD5556 Timing Diagram

Table I	AD5546 Serial In	nut Register Data	Format: Data is	loaded in the	MSB-First Format.
I ADIC I.	ADJJTU SUITAI III	put Register Data	i Fui mai, Data is	b ioaucu m the	wisd-r in st r or mat.

	MSB		LSB
Bit Position	B15 B14 B13 B12 B11 B10 B9	B8 B7 B6 B5 B4 B3 B2 I	B1 B0
Data Word	D15 D14 D13 D12 D11 D10 D9	D8 D7 D6 D5 D4 D3 D2 I	D1 D0

Table II. AD5556 Serial Input Register Data Format; Data is loaded in the MSB-First Format.

	MSB									LSB
Bit Position	B13 B12 B11 B10 B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Data Word	D13 D12 D11 D10 D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

A full 16-bit data word can be loaded into AD5556 serial input register, but only the last 14-bits entered will be transferred to the DAC register when \overline{WR} returns to logic high.

Table III. Control Inputs

RS	WR	LDAC	Register Operation
0	Х	Х	Reset Output to 0 with MSB=0 and MS with MSB=1
1	0	0	Load Input Register with Data Bits
1	1	1	Load DAC Register with the Contents of the Input Register
1	0	1	Input and DAC Register are Transparent
1			When LDAC and \overline{WR} are tied together and programmed as a pulse, the data bits are loaded into the input register on the falling edge of the pulse and then loaded into the DAC Register on the rising edge of the pulse
1	1	0	No Register Operation

AD5546/AD5556

CIRCUIT OPERATION

The AD5546/AD5556 contains a 16-/14-bit, current-output, digital-to-analog converter with parallel input data interface.

D/A Converter Section

The DAC architecture uses a current-steering R-2R ladder design. Figure 3 shows the typical equivalent DAC structure. The DAC contains a matching feedback resistor for use with an external opamp, Figure 4. With R_{FB} and I_{OUT} terminals connect to the opamp output and inverting node respectively, a precision voltage output can be achieved as:

$V_{OUT} = -V_{REF} * D / 65,536$	(AD5546)	(1)
$V_{OUT} = -V_{REF} * D / 16,384$	(AD5556)	(2)

Note that the output voltage polarity is opposite to the V_{REF} polarity for DC reference voltages.

These DACS are designed to operate with both negative or positive reference voltages. The V_{DD} power pin is only used by the internal logic to drive the DAC switches ON and OFF states.

DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY SWITCHES S1 & S2 ARE CLOSED, V_{DD} MUST BE POWERED

Figure 3. Equivalent R-2R DAC Circuit

Note that a matching switch is used in series with the internal $10k\Omega$ feedback resistor. If users attempt to measure R_{FB}, power must be applied to V_{DD} in order to achieve continuity.

Figure 4. Unipolar 2-Quadrant Multiplication, $V_{OUT}=0$ to $-V_{REF}$

Figure 5. Unipolar 2-Quadrant Multiplication, $V_{OUT}=0$ to $+V_{REF}$

Figure 6. 4-Quadrant Multiplication, V_{OUT} =- V_{REF} to + V_{REF}

These DACs are also designed to accommodate AC reference input signals. The AD5546 will accommodate input reference voltages in the range of -12 to +12 volts. The reference voltage inputs exhibit a constant nominal input-resistance value of $5k\Omega$, $\pm 30\%$. The DAC output (I_{OUT}) is code-dependent producing various resistances and capacitances. External amplifier choice should take into account the variation in impedance generated by the AD5546 on the amplifiers inverting input node. The feedback resistance in parallel with the DAC ladder resistance dominates output voltage noise. In order to maintain good analog performance, power supply bypassing of 0.01μ F to 0.1μ F ceramic or chip capacitors in parallel with a 1μ F tantulum capacitor is recommended. Due to degradation of power supply rejection ratio in frequency, users should not use switching regulator as the source of power supply.

ESD Protection Circuits

All logic-input pins contain back-biased ESD protection Zeners connected to ground (GND) and V_{DD} as shown in Figure 4.

AD5546/AD5556

Preliminary Technical Data

Figure 7. Equivalent ESD Protection Circuits

PCB Layout and Power Supply Bypassing

It is a good practice to employ compact, minimum-lead length PCB layout design. The leads to the input should be as short as possible to minimize IR drop and stray inductance.

It is also essential to bypass the power supplies with quality capacitors for optimum stability. Supply leads to the device should be bypassed with 0.01uF-0.1uF disc or chip ceramics capacitors. Low-ESR 1uF to 10 uF tantalum or electrolytic capacitors should also be applied at the supplies to minimize transient disturbance and filter out low frequency ripple The PCB metal traces between V_{REF} and R_{FB} should also be matched to minimize gain error.

AD5546/AD5556

Mechanical Outline Dimensions

# of		D			
LDS	Min	Nom	Max		
8	2.90	3.00	3.10		
14	4.90	6.00	6.10		
16	4.90	6.00	6.10		
20	6.40	6.50	6.60		
24	7.70	7.80	7.90		
28	9.60	9.70	9.80		

NOTES:

. 1. Controlling Dimensions are in mm.

2. All Dimensions per JEDEC Standards MO-153

Title: TSSOP 4.40mm Package Outline

Dim	Min.	Nom.	Max				
A			1.20				
A1	0.05		0.15				
A2	0.80	1.00	1.05				
E		6.40 BSC					
E1	4.30	4.40	4.50				
e		0.65 BSC					
Ь	0.19		0.30				
G	0.09		0.20				
L	0.45	0.60	0.75				
L1		1.0 REF					
R	0.09						
R1	0.09						
61	0=		80				
62		12: REF					
63		12" REF					
aaa		0.10					
bbb		0.10					