ANALOG DEVICES

Precision Instrumentation Amplifier

Preliminary Technical Data

AD8221

FEATURES:

Excellent Noise Immunity 90dB Minimum to 10kHz (G=10) Supply Voltage Range: Dual Supply ±2.3V to ±18V Single Supply 4.6V to 36V Excellent AC and DC Performance 90dB Minimum CMRR to 10kHz (G=10) 0.3 μV/°C Max Input Offset Drift 10 ppm/°C Max Gain Drift (G=1)

CONNECTION DIAGRAM 8-Pin Plastic Micro SOIC (ARM) Package 8-Pin Plastic SOIC (AR, BR) Package

APPLICATIONS Patient Monitor Sensor Signal Conditioning Bridge Transducer Multiplexed Systems 4 to 20mA Converter

GENERAL DESCRIPTION

The AD8221 is a gain programmable, True Instrumentation Amplifier that provides the user with the highest CMRR over frequency available. This break through performance allows the user to reject common mode voltage noise out to 100 kHz.

Errors in the users system will be held to minimum with the high CMRR over frequency performance. Line noise, as well as harmonics, noise encountered in Aerospace applications, noise from motors and repair equipment on factory floors, switching power supplies, and high frequency medical equipment used during operations will all be rejected since the CMRR rejection is 90dB (G=10) minimum to 10kHz with great performance out to 100kHz. The AD8221 also gives the user excellent DC performance by providing maximum offset and gain drift of 0.3μ V/°C and 10 ppm/°C (G=1) respectively.

The AD8221 operates on both single and dual supplies. The device is specified for operation at a power supply voltage of $\pm 15V$ and makes the AD8221 well suited for applications where input voltages of $\pm 10V$ are encountered.

The AD8221 is specified over the standard industrial temperature range, -40°C to 85°C.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that www.analog.com

may result from its' use. No license is granted by implication or otherwise

One Technology Way, P.O. Box, Norwood, MA 02062-9106, U.S.A Tel. 781/329-4700

Fax: 781/326-8703

REV. PrH 4/7/2003

PRELIMINARY TECHNICAL DATA

AD8221 - SPECIFICATIONS ($T_A = 25C$, $V_S = \pm 15V$ and $R_L = 10k\Omega$ unless otherwise noted)

		A	AD8221ARM			AD8221AR			AD8221BR		
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
GAIN	$G = 1 + (49.4 \text{k/R}_{G})$							Т	В	D	
Gain Range		1		1000	1		1000	1	2	1000	V/V
Gain Error	$\mathbf{N} = 10\mathbf{N}$	1		1000	1		1000	1		1000	• / •
	V ₀ =±10V			0.10			0.01			0.01	0./
G = 1				0.10			0.01			0.01	%
G = 10				0.2			0.10			0.10	%
G = 100				0.2			0.10			0.10	%
G = 1000				0.2			0.10			0.10	%
Gain Nonlinearity	V ₀ =±10V										
G = 1 - 1000	R∟ = 10kΩ		10	40		10	40		10	40	ppm
±Gain vs. Temperature											r r
G=1			3	10		3	10		3	5	ppm/°C
G>1			5	50		5	50		5	50	
				30			30			30	ppm/°C
VOLTAGE OFFSET	Total RTI Error =										
	$V_{OSI} + V_{OSO}/G$										
Input Offset, V _{OSI}				300			60			25	μV
Average TC				1.5			0.4			0.3	μV/°C
Output Offset, V _{oso}				600			300			150	μV
Average TC				10			6			5	μV/°C
Offset Referred to the Input				10			0			5	μν/ C
VS. Supply (PSR)											
G = 1		80	100		80	100		80	100		dB
G = 10		100	120		100	120		100	120		dB
G = 100		120	140		120	140		120	140		dB
G = 1000		120	140		120	140		120	140		dB
INPUT											
Input Operating Impedance											
Differential			$100\ 2$			$100\ \ 2$			$100\ \ 2$		GΩ∥ pI
Common Mode			$100 \ 2$			$100 \ 2$			$100 \ 2$		$G\Omega \parallel pI$
Input Operating Voltage Range	$V_s = \pm 3V$ to $\pm 18V$	-V _s +1.9		+V _s -1.4	-V _s +1.9		+V _s -1.4	-V _s +1.9		+V _s -1.4	V
Input Bias Current			0.5	2		0.5	2		0.5	2	nA
VS. Temperature			3	-		3	-		3	-	pA/°C
-											
Input Offset Current			0.3	1		0.3	1		0.3	1	nA
VS. Temperature			1.5			1.5			1.5		pA/°C
Common Mode Rejection from											
60Hz to 1kHz	$V_{CM} = 0V$ to $\pm 10V$										
G = 1		76			81			90			dB
G = 10		96			101			110			dB
G = 100		116			121			130			dB
G = 100 G = 1000											
		120			130			145			dB
1kHz t0 10kHz	$V_{CM} = 0V$ to $\pm 10V$										
G = 1	to 10kHz	76			81			90			dB
G = 10	to 10kHz	96			101			110			dB
G = 100	to 10kHz	110			110			120			dB
G = 1000	to 10kHz	110			110			120			dB
OUTPUT											
	$P_{\rm c} = 101-0$										v
Output Swing	$R_L = 10k\Omega$										V
	$V_s = \pm 2.3 V$ to $\pm 18 V$	-V _S +1.2		V _s -1.4	-V _s +1.2		V _s -1.4	-V _s +1.2		V _s -1.4	V
											1
DYNAMIC RESPONSE											
Small Signal -3dB Bandwidth											
G = 1			1000			1000			1000		kHz
G = 10			800			800			800		kHz
G = 100	1	1	120		1	120		1	120		kHz

PRELIMINARY TECHNICAL DATA

AD8221 - SPECIFICATIONS (T _A = 25C, V _S = \pm 15V and R _L = 10k Ω unless otherwise noted)											
		AD8221AI	AI	ł							

		AD8221ARM			AD8221AR			AD8221BR			
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
G = 1000			12			12			12		kHz
Settling Time to 0.01%	10V Step										
G = 1			10								
1 <g<100< td=""><td></td><td></td><td>15</td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td>μS</td></g<100<>			15			15					μS
G=1000			150			150					μS
Slew Rate	G=1	1.7	2		1.7	2		1.7	2		$V/\mu S$
	G=5	2	2.5		2	2.5		2	2.5		$V/\mu S$
NOISE											
RTI, 0.01 Hz to 10 Hz											
G=1			2			2			2		μV p-p
G=10			0.4			0.4			0.4		μV p-p
G=100-1000			0.25			0.25			0.25		μV p-p
Voltage Noise, 1 kHz											
Input, Voltage Noise, e _{ni}			7	8		7	8		7	8	nV/√Hz
Output, Voltage Noise, eno			40	75		50	75		50	75	nV/√Hz
POWER SUPPLY											
Operating Range		±2.3		± 18	±2.3		±18	±2.3		± 18	V
Quiescent Current	$V_s = \pm 2.3 V$ to $\pm 18 V$		0.9	1		0.9	1		0.9	1	mA
TEMPERATURE RANGE											
For Specified Performance		-40		+85	-40		+85	-40		+85	°C
For extended temperature see		-40		+125	-40		+125	-40		+125	
typical performance curves											