Preliminary

DESCRIPTION

The ADC0801 family is a series of five CMOS 8-bit successive approximation A/D converters using a resistive ladder and capacitive array together with an auto-zero comparator. These converters are designed to operate with microprocessor controlled buses using a minimum of external circuitry. The three-state output data lines can be connected directly to the data bus.

The differential analog voltage input allows for increased common-mode rejection and provides a means to adjust the zero scale offset. Additionally, the voltage reference input provides a means of encoding small analog voltages to the full 8 bits of resolution.

FEATURES

- · Compatible with most microprocessors
- Differential inputs
- Three-state outputs
- Logic levels TTL and MOS compatible
- Can be used with internal or external clock
- Analog input range 0V to V_{CC}
- Single 5V supply
- Guaranteed specification with 1MHz clock

APPLICATIONS

- Transducer to microprocessor interface
- Digital thermometer
- Digitally-controlled thermostat
- Microprocessor-based monitoring and control systems

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

	SYMBOL & PARAMETER	RATING	UNIT	
V _{cc}	Supply Voltage	6.5	v	
	Logic Control Input Voltages	-0.3 to + 16	V	
	All Other Input Voltages	-0.3 to (V _{CC} +0.3)	v	
T _A	Operating Temperature Range ADC0801/02-1 F	-55 to +125	°C	
	ADC0801/02/03-1 LCF	-40 to +85	°C	
	ADC0801/02/03/04/05-1 LCN	-40 to +85	°C	
	ADC0804-1 CN	0 to +70	°C	
T _{STG}	Storage Temperature	-65 to +150	°C	
T _{SOLD}	Lead Soldering Temperature (10 seconds)	300	°C	
PD	Package Power Dissipation at $T_A = 25^{\circ}C$	875	mW	

ADC0801/2/3/4/5-1

ADC0801/2/3/4/5-1

Preliminary

BLOCK DIAGRAMS

ADC0801/2/3/4/5-1

Preliminary

DC ELECTRICAL CHARACTERISTICS $V_{CC} = 5.0V$, $f_{CLK} = 1$ MHz, $T_{MIN} \le T_A \le T_{MAX}$, unless otherwise specified.

SYMBOL & PARAMETER	TEST CONDITIONS	AD	C0801/2/3	/4/5	UNIT
		Min	Тур	Max	
ADC0801 Relative Accuracy Error (Adjusted)	Full Scale Adjusted			0.25	LSE
ADC0802 Relative Accuracy Error (Unadjusted)	$\frac{V_{\text{REF}}}{2} = 2.500 \text{ V}_{\text{DC}}$			0.50	LSE
ADC0803 Relative Accuracy Error (Adjusted)	Full Scale Adjusted			0.50	LSE
ADC0804 Relative Accuracy Error (Unadjusted)	$\frac{V_{\text{REF}}}{2} = 2.500 \text{ V}_{\text{DC}}$			1	LSE
ADC0805 Relative Accuracy Error (Unadjusted)	$\frac{V_{REF}}{2}$ = has no connection			1	LSE
V _{REF} 2 Input Resistance		400	640	-	Ω
Analog Input Voltage Range		-0.05		V _{CC} +0.05	v
DC Common Mode Error	Over Analog Input Voltage Range		1/16	1/8	LSE
Power Supply Sensitivity	$V_{CC} = 5V \pm 10\%^{1}$				
CONTROL INPUTS					
VIH Logical "1" Input Voltage	$V_{CC} = 5.25 V_{DC}$	2.0		15	VDC
VIL Logical "0" Input Voltage	$V_{CC} = 4.75 V_{DC}$			0.8	VDC
I _{IH} Logical "1" Input Current	$V_{IN} = 5V_{DC}$		0.005	1	μA _D
IIL Logical "0" Input Current	$V_{IN} = 0V_{DC}$	-1	-0.005	-	μA _D
CLOCK IN AND CLOCK R					
V _T + Clk In Positive-Going Threshold Voltage		2.7	3.1	3.5	VDC
V _T - Clk In Negative-Going Threshold Voltage		1.5	1.8	2.1	VDC
V_H Clk In Hysteresis (V_{T+}) - (V_{T-})	5	0.6	1.3	2.0	VDC
V _{OL} Logical "0" Clk R Output Voltage	$I_{OL} = 360 \mu A, V_{CC} = 4.75 V_{DC}$			0.4	VDC
V _{OH} Logical "1" Clk R Output Voltage	$I_{OH} = -360 \mu A, V_{CC} = 4.75 V_{DC}$	2.4			VDC
DATA OUTPUT AND INTR					
V _{OL} Logical "0" Output Voltage					
Data Outputs	$I_{OL} = 1.6 \text{mA}, V_{CC} = 4.75 V_{DC}$			0.4	VDC
INTR Outputs	$I_{OL} = 1.0 \text{mA}, V_{CC} = 4.75 \text{ V}_{DC}$			0.4	VDC
V _{OH} Logical "1" Output Voltage	$I_{OH} = -360 \mu A, V_{CC} = 4.75 V_{DC}$	2.4			VDC
	$l_{OH} = -10\mu A, V_{CC} = 4.75 V_{DC}$	4.5			V _{DC}
I _{OZL} 3-State Output Leakage	$V_{OUT} = OV_{DC}, \overline{CS} = Logical "1"$	-3			μA _D
I _{OZH} 3-State Output Leakage	V _{OUT} = 5V _{DC} , CS = Logical "1"	1		3	μA _D
I _{SC} + Output Short Circuit Current	$V_{OUT} = O_V, T_A = 25^{\circ}C$	4.5	6		mA _D
I _{SC} – Output Short Circuit Current	$V_{OUT} = V_{CC}, T_A = 25^{\circ}C$	9.0	16		mA _D
I _{CC} Power Supply Current	$f_{CLK} = 1MHz$, $V_{REF/2} = Open$ $\overline{CS} = Logical "1"$, $T_A = 25^{\circ}C$		3.0	3.5	mA

NOTE:

1. Analog inputs must remain within the range: –0.05 \leqslant V $_{IN}$ \leqslant V $_{CC}$ + 0.05V.

ADC0801/2/3/4/5-1

Preliminary

AC ELECTRICAL CHARACTERISTICS

		TO FR	FROM	TEST CONDITIONS	ADC0801/2/3/4/5			UNIT
SYMBOL & PARAMETER Conversion Time		10	FROM	OM TEST CONDITIONS		Тур	Max	
				$f_{CLK} = 1 MHz^1$	66		73	μs
f _{CLK}	Clock Frequency			See Note 1.	0.1	1.0	3.0	MHz
_	Clock Duty Cycle			See Note 1.	40		60	%
CR	Free-Running Conversion Rate			$\overline{CS} = 0$, $f_{CLK} = 1MHz$ INTR Tied To \overline{WR}			13690	conv/s
	Start Pulse Width			$\overline{CS} = 0$	30			ns
tACC	Access Time	Output	RD	$\overline{\text{CS}} = 0, \text{C}_{\text{L}} = 100 \text{ pF}$		75	100	ns
t _{1H} , t _{OH}	Three-State Control	Output	RD	CL = 10 pF, RL = 10K See Three-State Test Circuit		70	100	ns
t _{W1} , t _{R1}	INTR Delay	INTR	WD or RD			100	150	ns
CIN	Logic Input = Capacitance					5	7.5	pF
C _{OUT}	Three-State Output Capacitance					5	7.5	pF

NOTE:

1. Accuracy is guaranteed at f_{CLK} =1MHz. Accuracy may degrade at higher clock frequencies.

Signetics

ADC0801/2/3/4/5-1

Preliminary

FUNCTIONAL DESCRIPTION

The ADC0801 through ADC0805 series of A/D converters are successive approximation devices with 8-bit resolution and no missing codes. The most significant bit is tested first and after 64 clock cycles a digital 8-bit binary word is transferred to an output latch and the INTR pin goes low, indicating that conversion is complete. A conversion in progress can be interrupted by issuing another start command. The device may be operated in a continuous conversion mode by connecting the INTR and WR pins together and holding the CS pin low. To insure start-up when connected this way, an external WR pulse is required at power-up. As the \overline{WR} input goes low, when \overline{CS} is low, the SAR is cleared and remains so as long as these two inputs are low. Conversion begins between 1 and 8 clock periods after at least one of these inputs goes high. As the conversion begins, the INTR line goes high. Note that the INTR line will remain low until 1 to 8 clock cycles after either the \overline{WR} or the \overline{CS} input (or both) goes high.

When the \overline{CS} and \overline{RD} inputs are both brought low to read the data, the \overline{INTR} line will go low and the three-state output latches are enabled. The digital control lines (\overline{CS} , \overline{RD} , and \overline{WR}) operate with standard TTL levels and have been renamed when compared with standard A/D Start and Output Enable labels. For nonmicroprocessor based applications, the \overline{CS} pin can be grounded, the \overline{WR} pin can be interpreted as a START pulse pin, and the \overline{RD} pin performs the OE (Output Enable) function.

The $V_{\rm IN}(-)$ input can be used to subtract a fixed voltage from the input voltage. Because there is a time interval between sampling the $V_{\rm IN}(+)$ and the V(-) inputs, it is important that these inputs remain constant, during the entire conversion cycle.

THREE-STATE TEST CIRCUITS AND WAVEFORMS

ADC0801/2/3/4/5-1

Preliminary

TIMING DIAGRAMS (All timing is measured from the 50% voltage points)

